Đáp án:
$S=\left\{\dfrac{\pi}{6}+k2\pi;\dfrac{5\pi}{6}+k2\pi\,\bigg|\,k\in\mathbb Z\right\}$
Giải thích các bước giải:
ĐKXĐ: $\begin{cases}\cos x\ne 0\\\cos2x\ne 1\end{cases}⇔\begin{cases}x\ne\dfrac{\pi}{2}+k\pi\\x\ne k\pi\end{cases}$
$\dfrac{1+\cos2x}{\cos x}=\dfrac{\sin2x}{1-\cos2x}$
$⇔(1+\cos2x)(1-\cos2x)=\sin2x.\cos x$
$⇔1-\cos^22x=\sin2x.\cos x$
$⇔\sin^22x-\sin2x.\cos x=0$
$⇔\sin2x(\sin2x-\cos x)=0$
$⇔\sin2x(2\sin x\cos x-\cos x)=0$
$⇔\sin2x.\cos x.(2\sin x-1)=0$
$⇔\left[ \begin{array}{l}\sin2x=0\\\cos x=0\\\sin x=\dfrac{1}{2}\end{array} \right.$
$⇔\left[ \begin{array}{l}2x=k\pi\\x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{array} \right.\,\,(k\in\mathbb Z)$
$⇔\left[ \begin{array}{l}x=k\dfrac{\pi}{2}\,(L)\\x=\dfrac{\pi}{2}+k\pi\,(L)\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{array} \right.\,\,(k\in\mathbb Z)$
Vậy $S=\left\{\dfrac{\pi}{6}+k2\pi;\dfrac{5\pi}{6}+k2\pi\,\bigg|\,k\in\mathbb Z\right\}$.