Gọi \({{z}_{1}},\,\,{{z}_{2}}\) là hai nghiệm phức của phương trình \({{z}^{2}}+2z+10=0.\) Tính giá trị của biểu thức \(A={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}.\) A.10 B.19 C.20 D.17
Đáp án đúng: C Giải chi tiết:Ta có \({{z}^{2}}+2z+10=0\Leftrightarrow {{\left( z+1 \right)}^{2}}=-\,9\Leftrightarrow {{\left( z+1 \right)}^{2}}={{\left( 3i \right)}^{2}}\Leftrightarrow \left[ \begin{align} & z=-\,1+3i \\ & z=-\,1-3i \\\end{align} \right..\) Khi đó \(A={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}={{\left| -\,1+3i \right|}^{2}}+{{\left| -\,1-3i \right|}^{2}}=10+10=20.\) Chọn C.