Đáp án:
Hàm số đồng biến trên R
Giải thích các bước giải:
Để hàm số đồng biến
\(\begin{array}{l}
\to y' \ge 0\\
\to y' = 3{x^4} - 12{x^3} + 12{x^2} \ge 0\\
\to 3{x^2}\left( {{x^2} - 4x + 4} \right) \ge 0\\
\to 3{x^2}{\left( {x - 2} \right)^2} \ge 0\left( 1 \right)\\
Do:\left\{ \begin{array}{l}
{x^2} \ge 0\left( {ld} \right)\forall x \in R\\
{\left( {x - 2} \right)^2} \ge 0\left( {ld} \right)\forall x \in R
\end{array} \right.
\end{array}\)
⇒ Bất phương tình (1) luôn đúng với mọi x
⇒ Hàm số đồng biến trên R