Giải thích các bước giải:
\(\begin{array}{l}
m \in \left( { - \infty ; - 1} \right] \Rightarrow m \le - 1\\
y = \sqrt {(m - 3)x + m} + \sqrt {(1 - m)x + 2m - 3} \\
Dk:\left\{ \begin{array}{l}
(m - 3)x + m \ge 0\\
(1 - m)x + 2m - 3 \ge 0
\end{array} \right.(*)\\
TH1:\;\left\{ \begin{array}{l}
m - 3 < 0\\
1 - m > 0
\end{array} \right. \Leftrightarrow m < 1\\
Khi\;do\;(*) \Leftrightarrow \left\{ \begin{array}{l}
x \le \frac{{ - m}}{{m - 3}}\\
x \ge \frac{{2m - 3}}{{m - 1}}
\end{array} \right. \Rightarrow \frac{{ - m}}{{m - 3}} \ge - 1 \Leftrightarrow \frac{{ - m}}{{m - 3}} + 1 \ge 0 \Leftrightarrow \frac{{ - 3}}{{m - 3}} \ge 0 \to t/m\;\forall m < 1\\
TH2:\left\{ \begin{array}{l}
m - 3 > 0\\
1 - m < 0
\end{array} \right. \Leftrightarrow m > 3 \to khong\;thoa\,man\\
TH3:\left\{ \begin{array}{l}
m - 3 > 0\\
1 - m > 0
\end{array} \right. \Leftrightarrow 3 < m < 1 \to khong\;thoa\;man\\
TH4:\left\{ \begin{array}{l}
m - 3 < 0\\
1 - m < 0
\end{array} \right. \Leftrightarrow 1 < m < 3\\
(*) \Leftrightarrow \left\{ \begin{array}{l}
x \le \frac{{ - m}}{{m - 3}}\\
x \le \frac{{2m - 3}}{{m - 1}}
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
\frac{{ - m}}{{m - 3}} \ge \frac{{2m - 3}}{{m - 1}} \ge - 1\\
\frac{{2m - 3}}{{m - 1}} \ge \frac{{ - m}}{{m - 3}} \ge - 1
\end{array} \right. \Rightarrow m \ge \frac{4}{3}\\
\end{array}\)