Đáp án:
Bài `1`
`a, (-6xy^5) .(3x^2 y)`
`= (-6 .3)(x.x^2).(y^5 .y)`
`= -18x^3 y^6`
`b, (4x^7 y^2)^2 .(-3xy^3)`
`= 16x^14 y^4 . (-3xy^3)`
`= [16 . (-3)](x^14 .x)(y^4 . y^3)`
`= -48x^15 y^7`
`c, 5x^4 - (2x).(3x^2) +(3x^3).(-4x) + 6x^3`
`= 5x^4 - 6x^3 - 12x^4 + 6x^3`
`= (5x^4 - 12x^4) +( -6x^3 + 6x^3)`
`= -7x^4`
Bài `2`:
`a, x(1/5)^9 = (1/5)^10`
`⇔ x = (1/5)^10 : (1/5)^9`
`⇔ x = (1/5)^(10 - 9)`
`⇔ x = (1/5)^1 = 1/5`
Vậy `x = 1/5`
`c, 3^(x - 12) : 81 = 27`
`⇔ 3^(x - 12) : 3^4 = 3^3`
`⇔ 3^(x - 12) = 3^3 . 3^4`
`⇔ 3^(x - 12) = 3^7`
`⇔ x - 12 = 7`
`⇒ x = 7 + 12`
`⇒ x = 19`
Vậy `x = 19`
`d, (5x - 1)^3 = -8`
`⇔ (5x - 1)^3 = (-2)^3`
`⇔ 5x - 1 = -2`
`⇔ 5x = -2 + 1`
`⇔ 5x = -1`
`⇔ x = -1/5`
Vậy `x = -1/5`
`e, (5 - 2x)^2 = 25`
`⇔ (5 - 2x)^2 - 25 = 0`
`⇔ (5 - 2x)^2 - 5^2 = 0`
`⇔ (5 - 2x + 5)(5 - 2x - 5) = 0`
`⇔ (10 - 2x).(-2x) = 0`
`⇒` $\left[\begin{matrix} -2x = 0\\ 10-2x = 0\end{matrix}\right.$
`⇒` $\left[\begin{matrix} x = 0\\ 2x = 10\end{matrix}\right.$
`⇒` $\left[\begin{matrix} x = 0\\ x = 5\end{matrix}\right.$
Vậy `x = 0` hoặc `x = 5`