Đáp án:
`a,`
`p = (6n + 5)/(3n + 2)`
Gọi $UCLN (6n + 5; 3n + 2) = d$ (d ∈ N*)
`->` \(\left\{ \begin{array}{l}6n + 5\vdots d \\3n + 2 \vdots d\end{array} \right.\)
`->` \(\left\{ \begin{array}{l}6n + 5\vdots d \\2 (3n + 2) \vdots d\end{array} \right.\)
`->` \(\left\{ \begin{array}{l}6n + 5\vdots d \\6n + 4 \vdots d\end{array} \right.\)
`-> (6n + 5) - (6n + 4) \vdots d`
`-> 1 \vdots d`
`-> d ∈ Ư (1) = {±1}`
mà d ∈ N*
`-> d = 1`
`-> p = (6n + 5)/(3n + 2)` tối giản
$\\$
`b,`
`p = (6n + 5)/(3n + 2)`
`⇔ p = (6n + 4 + 1)/(3n + 2)`
`⇔ p = (2 (3n + 2) + 1)/(3n + 2)`
`⇔ p = (2 (3n + 2) )/(3n + 2) + 1/(3n + 2)`
`⇔ p = 2 + 1/(3n + 2)`
Vì n ∈ N*
$→ 3n \geqslant 0 ∀ x$
$→ 3n + 2 \geqslant 2$
$→$ `1/(3n + 2)` $\leqslant$ `1/2`
$→$ `2 + 1/(3n + 2)` $\leqslant$ `2 + 1/2 = 5/2`
$→ p \leqslant $ `5/2`
`-> max p = 5/2`
Dấu "`=`" xảy ra khi :
`⇔ 3n + 2= 2 ⇔ 3n = 0 ⇔ n =0`
Vậy `max p = 5/2 ⇔ n = 0`