Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
\sqrt {12 - 2\sqrt {35} } - \sqrt {12 + 2\sqrt {35} } \\
= \sqrt {7 - 2.\sqrt 7 .\sqrt 5 + 5} - \sqrt {7 + 2.\sqrt 7 .\sqrt 5 + 5} \\
= \sqrt {{{\left( {\sqrt 7 - \sqrt 5 } \right)}^2}} - \sqrt {{{\left( {\sqrt 7 + \sqrt 5 } \right)}^2}} \\
= \left( {\sqrt 7 - \sqrt 5 } \right) - \left( {\sqrt 7 + \sqrt 5 } \right)\\
= - 2\sqrt 5 \\
b,\\
B = \sqrt {10 + 2\sqrt {21} } - \sqrt {10 - 2\sqrt {21} } \\
= \sqrt {7 + 2.\sqrt 7 .\sqrt 3 + 3} - \sqrt {7 - 2.\sqrt 7 .\sqrt 3 + 3} \\
= \sqrt {{{\left( {\sqrt 7 + \sqrt 3 } \right)}^2}} - \sqrt {{{\left( {\sqrt 7 - \sqrt 3 } \right)}^2}} \\
= \left( {\sqrt 7 + \sqrt 3 } \right) - \left( {\sqrt 7 - \sqrt 3 } \right)\\
= 2\sqrt 3 \\
c,\\
\sqrt {19 - 6\sqrt {10} } - \sqrt {23 + 6\sqrt {10} } \\
= \sqrt {10 - 2.\sqrt {10} .3 + 3} - \sqrt {18 + 2.3.\sqrt {2.5} + 5} \\
= \sqrt {{{\left( {\sqrt {10} - \sqrt 3 } \right)}^2}} - \sqrt {18 + 2.3\sqrt 2 .\sqrt 5 + 5} \\
= \left( {\sqrt {10} - \sqrt 3 } \right) - \sqrt {{{\left( {3\sqrt 2 + \sqrt 5 } \right)}^2}} \\
= \sqrt {10} - \sqrt 3 - \left( {3\sqrt 2 + \sqrt 5 } \right)\\
= \sqrt {10} - \sqrt 3 - 3\sqrt 2 - \sqrt 5 \\
d,\\
\sqrt {6 - 3\sqrt 3 } - \sqrt {2 - \sqrt 3 } \\
= \sqrt {3.\left( {2 - \sqrt 3 } \right)} - \sqrt {2 - \sqrt 3 } \\
= \sqrt 3 .\sqrt {2 - \sqrt 3 } - \sqrt {2 - \sqrt 3 } \\
= \sqrt {2 - \sqrt 3 } .\left( {\sqrt 3 - 1} \right)\\
= \sqrt {\dfrac{1}{2}.\left( {4 - 2\sqrt 3 } \right)} .\left( {\sqrt 3 - 1} \right)\\
= \sqrt {\dfrac{1}{2}.{{\left( {\sqrt 3 - 1} \right)}^2}} .\left( {\sqrt 3 - 1} \right)\\
= \dfrac{1}{{\sqrt 2 }}.\left( {\sqrt 3 - 1} \right).\left( {\sqrt 3 - 1} \right)\\
= \dfrac{1}{{\sqrt 2 }}.\left( {4 - 2\sqrt 3 } \right)\\
= 2\sqrt 2 - \sqrt 6 \\
e,\\
\sqrt {15 + 5\sqrt 5 } - \sqrt {3 - \sqrt 5 } \\
= \sqrt {\dfrac{5}{2}.\left( {6 + 2\sqrt 5 } \right)} - \sqrt {\dfrac{1}{2}\left( {6 - 2\sqrt 5 } \right)} \\
= \sqrt {\dfrac{5}{2}.{{\left( {\sqrt 5 + 1} \right)}^2}} - \sqrt {\dfrac{1}{2}.{{\left( {\sqrt 5 - 1} \right)}^2}} \\
= \sqrt {\dfrac{5}{2}} .\left( {\sqrt 5 + 1} \right) - \sqrt {\dfrac{1}{2}} .\left( {\sqrt 5 - 1} \right)\\
= \dfrac{5}{{\sqrt 2 }} + \dfrac{{\sqrt 5 }}{{\sqrt 2 }} - \dfrac{{\sqrt 5 }}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}\\
= \dfrac{6}{{\sqrt 2 }} = 3\sqrt 2 \\
f,\\
\sqrt {24 - 3\sqrt {15} } - \sqrt {36 - 9\sqrt {15} } \\
= \sqrt {\dfrac{1}{2}\left( {48 - 6\sqrt {15} } \right)} - \sqrt {\dfrac{1}{2}\left( {72 - 18\sqrt {15} } \right)} \\
= \sqrt {\dfrac{1}{2}.\left( {45 - 2.3\sqrt 5 .\sqrt 3 + 3} \right)} - \sqrt {\dfrac{1}{2}.\left( {45 - 2.3\sqrt 5 .3\sqrt 3 + 27} \right)} \\
= \sqrt {\dfrac{1}{2}.{{\left( {3\sqrt 5 - \sqrt 3 } \right)}^2}} - \sqrt {\dfrac{1}{2}.{{\left( {3\sqrt 5 - 3\sqrt 3 } \right)}^2}} \\
= \dfrac{1}{{\sqrt 2 }}.\left( {3\sqrt 5 - \sqrt 3 } \right) - \dfrac{1}{{\sqrt 2 }}.\left( {3\sqrt 5 - 3\sqrt 3 } \right)\\
= \dfrac{1}{{\sqrt 2 }}.\left( {3\sqrt 5 - \sqrt 3 - 3\sqrt 5 + 3\sqrt 3 } \right)\\
= \dfrac{1}{{\sqrt 2 }}.2\sqrt 3 \\
= \sqrt 6
\end{array}\)
\(\begin{array}{l}
g,\\
\sqrt {4 - \sqrt 7 } - \sqrt {8 - 3\sqrt 7 } \\
= \sqrt {\dfrac{1}{2}\left( {8 - 2\sqrt 7 } \right)} - \sqrt {\dfrac{1}{2}\left( {16 - 6\sqrt 7 } \right)} \\
= \sqrt {\dfrac{1}{2}\left( {7 - 2.\sqrt 7 .1 + 1} \right)} - \sqrt {\dfrac{1}{2}\left( {9 - 2.3.\sqrt 7 + 7} \right)} \\
= \sqrt {\dfrac{1}{2}{{\left( {\sqrt 7 - 1} \right)}^2}} - \sqrt {\dfrac{1}{2}{{\left( {3 - \sqrt 7 } \right)}^2}} \\
= \dfrac{1}{{\sqrt 2 }}.\left( {\sqrt 7 - 1} \right) - \dfrac{1}{{\sqrt 2 }}\left( {3 - \sqrt 7 } \right)\\
= \dfrac{1}{{\sqrt 2 }}.\left[ {\left( {\sqrt 7 - 1} \right) - \left( {3 - \sqrt 7 } \right)} \right]\\
= \dfrac{1}{{\sqrt 2 }}.\left( {2\sqrt 7 - 4} \right)\\
= \sqrt {14} - 2\sqrt 2
\end{array}\)