Đáp án:
Bài 1 :
$a) y(y² -1) =0$
$⇔ y = 0$
$⇔ y² -1 = 0⇔y =±1$
Vậy....
$b) y(y-\dfrac{1}{2})(2y+5)=0$
$⇔y =0$
$⇔ y - \dfrac{1}{2} =0 ⇔ y = \dfrac{1}{2}$
$⇔ 2y +5 = 0⇔y = -\dfrac{5}{2}$
Vậy.....
$c)(3x-2)(4x+5)=0#
⇔\(\left[ \begin{array}{l}3x-2=0\\4x+5=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=\dfrac{2}{3}\\x=-\dfrac{5}{4}\end{array} \right.\)
Vậy....
$d) (2,3x-6,9)(0,1x+2)=0$
⇔\(\left[ \begin{array}{l}2,3x-6,9=0\\0,1x+2=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=3\\x=-20\end{array} \right.\)
Vậy....
$e) (4x+2)(x^2+1)=0$
Vì $x^2 ≥ 0 ⇔ x^2 +1 > 0$ (loại)
$⇔4x+2 = 0 $
$⇔ 4x = -2$
$⇔ x= -2 : 4$
$⇔ x = -\dfrac{1}{2}$
Vậy...
$f) (2x+7)(x-5)(5x+1)=0$
⇔\(\left[ \begin{array}{l}2x+7=0\\x-5=0\\5x+1=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=-\dfrac{7}{2}\\x=5\\x=-\dfrac{1}{5}\end{array} \right.\)
Vậy....
Bài 2 :
$a) 2y^2 -11y =0$
$⇔ y(2y-11)=0$
⇔\(\left[ \begin{array}{l}y=0\\2y-11=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}y=0\\y=\dfrac{11}{2}\end{array} \right.\)
Vậy....
$b) 2x(x-3)+5(x-3)=0$
⇔\(\left[ \begin{array}{l}x-3=0\\2x+5=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=3\\x=-\dfrac{5}{2}\end{array} \right.\)
Vậy...
$c) x(2x-7)-4x+14=0$
$⇔x(2x-7) -2(2x-7)=0$
$⇔(2x-7)(x-2)=0$
⇔\(\left[ \begin{array}{l}2x-7=0\\x-2=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=\dfrac{7}{2}\\x=2\end{array} \right.\)
Vậy...
$d) 3x-15 = 2x(x-5)$
$⇔ 3x-15 -2x(x-5)=0$
$⇔ 3(x-5) -2x(x-5)=0$
$⇔(x-5)(3-2x)=0$
⇔\(\left[ \begin{array}{l}x-5=0\\3-2x=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=5\\x=\dfrac{3}{2}\end{array} \right.\)
Vậy...