Đáp án:
$A = \left\{ \begin{array}{l}
\sqrt 2 .\tan a,0 < a < \dfrac{\pi }{2}\\
\dfrac{{ - \sqrt 2 }}{{\cos a}},\dfrac{\pi }{2} < a < \pi
\end{array} \right.$
Giải thích các bước giải:
ĐKXĐ: $a \ne \dfrac{\pi }{2}$
Ta có:
$\begin{array}{l}
A = \dfrac{{\sin \left( {\dfrac{\pi }{4} + \dfrac{a}{2}} \right)}}{{\sqrt {1 - \sin a} }} - \dfrac{{\sin \left( {\dfrac{\pi }{4} - \dfrac{a}{2}} \right)}}{{\sqrt {1 + \sin a} }}\\
= \dfrac{{\dfrac{1}{{\sqrt 2 }}\cos \dfrac{a}{2} + \dfrac{1}{{\sqrt 2 }}\sin \dfrac{a}{2}}}{{\sqrt {1 - \sin a} }} - \dfrac{{\dfrac{1}{{\sqrt 2 }}\cos \dfrac{a}{2} - \dfrac{1}{{\sqrt 2 }}\sin \dfrac{a}{2}}}{{\sqrt {1 + \sin a} }}\\
= \dfrac{1}{{\sqrt 2 }}\left( {\dfrac{{\cos \dfrac{a}{2} + \sin \dfrac{a}{2}}}{{\sqrt {1 - \sin a} }} - \dfrac{{\cos \dfrac{a}{2} - \sin \dfrac{a}{2}}}{{\sqrt {1 + \sin a} }}} \right)\\
= \dfrac{1}{{\sqrt 2 }}\left( {\dfrac{{\cos \dfrac{a}{2} + \sin \dfrac{a}{2}}}{{\sqrt {{{\sin }^2}\left( {\dfrac{a}{2}} \right) - 2\sin \dfrac{a}{2}\cos \dfrac{a}{2} + {{\cos }^2}\left( {\dfrac{a}{2}} \right)} }} - \dfrac{{\cos \dfrac{a}{2} - \sin \dfrac{a}{2}}}{{\sqrt {{{\sin }^2}\left( {\dfrac{a}{2}} \right) + 2\sin \dfrac{a}{2}\cos \dfrac{a}{2} + {{\cos }^2}\left( {\dfrac{a}{2}} \right)} }}} \right)\\
= \dfrac{1}{{\sqrt 2 }}\left( {\dfrac{{\cos \dfrac{a}{2} + \sin \dfrac{a}{2}}}{{\sqrt {{{\left( {\sin \dfrac{a}{2} - \cos \dfrac{a}{2}} \right)}^2}} }} - \dfrac{{\cos \dfrac{a}{2} - \sin \dfrac{a}{2}}}{{\sqrt {{{\left( {\sin \dfrac{a}{2} + \cos \dfrac{a}{2}} \right)}^2}} }}} \right)\\
= \dfrac{1}{{\sqrt 2 }}\left( {\dfrac{{\cos \dfrac{a}{2} + \sin \dfrac{a}{2}}}{{\left| {\sin \dfrac{a}{2} - \cos \dfrac{a}{2}} \right|}} - \dfrac{{\cos \dfrac{a}{2} - \sin \dfrac{a}{2}}}{{\left| {\sin \dfrac{a}{2} + \cos \dfrac{a}{2}} \right|}}} \right)
\end{array}$
Lại có:
$0 < a < \pi \Rightarrow 0 < \dfrac{a}{2} < \dfrac{\pi }{2} \Rightarrow \cos \dfrac{a}{2} > 0;\sin \dfrac{a}{2} > 0$
$ + )TH1:0 < \dfrac{a}{2} < \dfrac{\pi }{4} \Rightarrow \cos \dfrac{a}{2} > \sin \dfrac{a}{2} > 0$
Khi đó:
$\begin{array}{l}
A = \dfrac{1}{{\sqrt 2 }}\left( {\dfrac{{\cos \dfrac{a}{2} + \sin \dfrac{a}{2}}}{{\cos \dfrac{a}{2} - \sin \dfrac{a}{2}}} - \dfrac{{\cos \dfrac{a}{2} - \sin \dfrac{a}{2}}}{{\cos \dfrac{a}{2} + \sin \dfrac{a}{2}}}} \right)\\
= \dfrac{1}{{\sqrt 2 }}.\dfrac{{{{\left( {\cos \dfrac{a}{2} + \sin \dfrac{a}{2}} \right)}^2} - {{\left( {\cos \dfrac{a}{2} - \sin \dfrac{a}{2}} \right)}^2}}}{{\left( {\cos \dfrac{a}{2} - \sin \dfrac{a}{2}} \right)\left( {\cos \dfrac{a}{2} + \sin \dfrac{a}{2}} \right)}}\\
= \dfrac{1}{{\sqrt 2 }}.\dfrac{{4\cos \dfrac{a}{2}\sin \dfrac{a}{2}}}{{{{\cos }^2}\left( {\dfrac{a}{2}} \right) - {{\sin }^2}\left( {\dfrac{a}{2}} \right)}}\\
= \dfrac{1}{{\sqrt 2 }}.\dfrac{{2\sin a}}{{\cos a}}\\
= \sqrt 2 .\tan a
\end{array}$
$ + )TH2:\dfrac{\pi }{4} < \dfrac{a}{2} < \dfrac{\pi }{2} \Rightarrow \sin \dfrac{a}{2} > \cos \dfrac{a}{2} > 0$
Khi đó:
$\begin{array}{l}
A = \dfrac{1}{{\sqrt 2 }}\left( {\dfrac{{\cos \dfrac{a}{2} + \sin \dfrac{a}{2}}}{{\sin \dfrac{a}{2} - \cos \dfrac{a}{2}}} - \dfrac{{\cos \dfrac{a}{2} - \sin \dfrac{a}{2}}}{{\cos \dfrac{a}{2} + \sin \dfrac{a}{2}}}} \right)\\
= \dfrac{1}{{\sqrt 2 }}.\dfrac{{{{\left( {\cos \dfrac{a}{2} + \sin \dfrac{a}{2}} \right)}^2} + {{\left( {\cos \dfrac{a}{2} - \sin \dfrac{a}{2}} \right)}^2}}}{{\left( {\sin \dfrac{a}{2} - \cos \dfrac{a}{2}} \right)\left( {\cos \dfrac{a}{2} + \sin \dfrac{a}{2}} \right)}}\\
= \dfrac{1}{{\sqrt 2 }}.\dfrac{{2\left( {{{\cos }^2}\left( {\dfrac{a}{2}} \right) + {{\sin }^2}\left( {\dfrac{a}{2}} \right)} \right)}}{{{{\sin }^2}\left( {\dfrac{a}{2}} \right) - {{\cos }^2}\left( {\dfrac{a}{2}} \right)}}\\
= \dfrac{1}{{\sqrt 2 }}.\dfrac{2}{{ - \cos a}}\\
= \dfrac{{ - \sqrt 2 }}{{\cos a}}
\end{array}$
Vậy $A = \left\{ \begin{array}{l}
\sqrt 2 .\tan a,0 < a < \dfrac{\pi }{2}\\
\dfrac{{ - \sqrt 2 }}{{\cos a}},\dfrac{\pi }{2} < a < \pi
\end{array} \right.$