1a)(x−3)2−4=0⇒(x−3)2=4⇒[x−3=2x−3=−2⇒[x=5x=1
b) x2−2x=24
⇒x−2x−24=0
⇒x2−6x+4x−24=0⇒x(x−6)+4(x−6)=0⇒(x−6)(x+4)=0⇒[x−6=0x+4=0⇒[x=6x=−4
c) (2x+1)2+(x+3)2−5(x−7)(x+7)=0
⇒4x2+4x+1+x2+6x+9−5x2+245=0⇒10x+255=0⇒x=−25.5
d) (x−3)(x2+3x+9)+x(x+2)(2−x)=1
⇒x3−33+x(22−x2)=1⇒x3−27+4x−x3=1⇒4x=1+27⇒x=7
e) (3x−1)2+2(x+3)2+11(x+1)(1−x)=6
⇒9x2−6x+1+2(x2+6x+9)+11(1−x2)=6⇒9x2−6x+1+2x2+12x+18+11−11x2=6⇒6x+30=6⇒6x=−24⇒x=−4