Đáp án:
Giải thích các bước giải:
Let pa=x,qb=y,rc=z.pa=x,qb=y,rc=z. So given equations are:
x+y+z=1x+y+z=1 —(1)
1x+1y+1z=01x+1y+1z=0 —(2)
Required: x2+y2+z2x2+y2+z2
From (2), yz+xz+xyxyz=0yz+xz+xyxyz=0
=> yz+xz+xy=0yz+xz+xy=0 —(3)
Squaring (1) on both sides:
x2+y2+z2+2(xy+yz+xz)=1x2+y2+z2+2(xy+yz+xz)=1
=> x2+y2+z2+2(0)=1x2+y2+z2+2(0)=1 ∵yz+xz+xy=0∵yz+xz+xy=0
=> x2+y2+z2=1