(IQ2)Cho x, y, z thỏa: \(0\le\) x, y, z \(\le2\) và x+y+z=3.
Chứng minh: x3+y3+z3\(\le9\).
Lời giải:
Ta thấy \(x^3+y^3+z^3\leq 9\)
\(\Leftrightarrow (x+y+z)^3-3(x+y)(y+z)(z+x)\leq 9\)
\(\Leftrightarrow 27-3[(x+y+z)(xy+yz+xz)-xyz]\leq 9\)
\(\Leftrightarrow 3(xy+yz+xz)-xyz\geq 6(\star)\)
Vì \(x,y,z\in [0;2]\Rightarrow (x-2)(y-2)(z-2)\leq 0\)
\(\Leftrightarrow xyz+4\leq 2(xy+yz+xz)\)
Mặt khác \(xyz\geq 0\rightarrow 2(xy+yz+xz)\geq 4\rightarrow xy+yz+xz\geq 2\)
Do đó \(3(xy+yz+xz)-xyz\geq 2+4+xyz-xyz=6\)
Từ đó BĐT \((\star)\) hay ta có đpcm
Dấu bằng xảy ra khi \((x,y,z)=(2,1,0)\) và các hoán vị.
Cho a,b,c >= 0 thỏa mãn a+b+c=1. Tìm giá trị lớn nhất của A= căn bậc ba (a+b) + căn bậc ba (b+c) + căn bậc ba (c+a)
Cho a2 + b2 + c2=1. CM: -\(\dfrac{1}{2}\le ab+bc+ca\le1\)
chứng minh bất đẳng thức \(\sqrt{a}+\sqrt{a+2}< 2\sqrt{a+1}\)
Cho 3 số thực dương a,b,c thỏa mãn a+b+c=3. CMR \(\frac{b+1}{8-\sqrt{a}}+\frac{c+1}{8-\sqrt{b}}+\frac{a+1}{8-\sqrt{c}}\le\frac{6}{7}\)
a^4 + 3 >= 4a
Cho a, b, c €R a, b, c>0
Thỏa mãn a2+b2+c2=27
Tìm gtnn của A=a3+b3+c3
với x>=0. CM: x + 27/(x+3)3 >=1
Tìm GTNN của P = x + 2/(2x+1) với x>0
CM bất đẳng thức (ab+bc+ac)2 \(\ge\)3abc(a+b+c)
Cho x, y, z là số dương thỏa: xyz=1.
CMR: \(\dfrac{x^2}{y+1}+\dfrac{y^2}{z+1}+\dfrac{z^2}{x+1}\ge1,5\).
Chứng minh: \(\dfrac{a}{a+bc}+\dfrac{b}{b+ca}+\dfrac{c}{c+ab}\le\dfrac{9}{4}\)
(trong đó a, b, c dương thỏa: a+b+c=1)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến