a) `M=(x+2)/(x+3)-5/((x+3)(x-2))+1/(2-x)`
`=(x+2)/(x+3)-5/((x+3)(x-2))-1/(x-2)`
`=((x+2)(x-2)-5-x-3)/((x+3)(x-2))`
`=(x^2-4-x-8)/((x+3)(x-2))`
`=(x^2-x-12)/((x+3)(x-2))`
`=((x+3)(x-4))/((x+3)(x-2))`
`=(x-4)/(x-2)`
b) `|x-1|=1 <=>` \(\left[ \begin{array}{l}x-1=1\\x-1=-1\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=2(L)\\x=0\end{array} \right.\)
`x=0=> M=2`
c) `M=1/5 <=> (x+4)/(x-2) =1/5`
`<=> 5(x+4)=x-2`
`<=>x=9/2`