Đáp án:
b) $S=∅$
d) $S=\left\{\dfrac{17}{9}\right\}$
Giải thích các bước giải:
b) ĐKXĐ: $x\ge 3$
$\dfrac{1}{3}\sqrt{9x-27}+\sqrt{\dfrac{x-3}{4}}+2=0$
Ta có: $\begin{cases}\dfrac{1}{3}\sqrt{9x-27}\ge 0\\\sqrt{\dfrac{x-3}{4}}\ge 0\end{cases}$
$⇒\dfrac{1}{3}\sqrt{9x-27}+\sqrt{\dfrac{x-3}{4}}\ge 0$
$⇒\dfrac{1}{3}\sqrt{9x-27}+\sqrt{\dfrac{x-3}{4}}+2>0$
$⇒VT>VP$
Vậy $S=∅$.
d) ĐKXĐ: $x\le 2$
$2\sqrt{\dfrac{2-x}{4}}+\sqrt{8-4x}=1$
$⇔\sqrt{2-x}+2\sqrt{2-x}=1$
$⇔3\sqrt{2-x}=1$
$⇔9(2-x)=1$
$⇔2-x=\dfrac{1}{9}$
$⇔x=\dfrac{17}{9}\,(TM)$
Vậy $S=\left\{\dfrac{17}{9}\right\}$.