`\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{\sqrt{x}+2}{x+\sqrt{x}}(x>0)`
`=\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}(\sqrt{x}+1)}`
`=\frac{\sqrt{x}.\sqrt{x}-(\sqrt{x}+1)(\sqrt{x}+1)-(\sqrt{x}+2)}{\sqrt{x}(\sqrt{x}+1)}`
`=\frac{x-x-2\sqrt{x}-1-\sqrt{x}-2}{\sqrt{x}(\sqrt{x}+1)}`
`=\frac{-3\sqrt{x}-3}{\sqrt{x}(\sqrt{x}+1)}`
`=\frac{-3(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}+1)}`
`=\frac{-3}{\sqrt{x}}`