`a) x(x - y) - y(y - x)`
`= x^2-xy-y^2+xy`
`= x^2-y^2 -(xy-xy)`
`= x^2-y^2 `
Vậy `x(x - y) - y(y - x) = x^2-y^2`
`b) x(y - z) - y(x + z) + z(x - y)`
` = xy-xz -xy-yz+xz-yz`
`= (xy-xy) + (xz-xz) -(yz+yz)`
` = -(yz+yz)`
`= -2yz`
Vậy `x(y - z) - y(x + z) + z(x - y) = -2yz`
` c)(x^3 - y^3)/(x - y) (x \ne y )`
` = ((x^2+xy+y^2).(x-y))/(x-y) `
` = x^2 +xy+y^2`
Vậy `(x^3 - y^3)/(x - y) = x^2+xy+y^2 (x \ne y )`