Đáp án:
`b, x(x + 1)(x +2)(x + 3) + 1`
`= [x(x + 3)][(x + 1)(x + 2)] + 1`
`= (x^2 + 3x)(x^2 + 3x + 2) + 1`
Đặt `x^2 + 3x + 1 =a`, ta được:
`(a - 1)(a +1) + 1`
`= a^2 - 1 + 1`
`= a^2`
`= (x^2 + 3x + 1)^2`
`c, (x^2 + x + 1)(x^2 + x + 2) - 12`
Đặt `x^2 + x = a`, ta được:
`(a + 1)(a + 2)-12`
`= a^2 + 2a + 1 + 2 - 12`
`= a^2 + 3a - 10`
`= a^2 - 2a + 5a - 10`
`= (a^2 - 2a) + (5a - 10)`
`= a(a - 2) + 5(a - 2)`
`= (a -2 )(a + 5)`
`= (x^2 + x - 2)(x^2 + x + 5)`
`= [(x^2 - x) + (2x - 2)](x^2 + x + 5)`
`= [x(x - 1) + 2(x - 1)](x^2 + x + 5)`
`= (x - 1)(x + 2)(x^2 + x + 5)`
`d, (x^2 + 4x + 8)^2 + 3x(x^2 + 4x + 8) + 2x^2`
Đặt `x^2 + 4x + 8 = a`, ta được:
`a^2 + 3xa + 2x^2`
`= a^2 + 2ax + x^2 + ax + x^2`
`= (a^2 + 2ax + x^2) + (ax + x^2)`
`= (a + x)^2 + x(a + x)`
`= (a + x)(a + x + x)= (a + x)(a + 2x)`
`= (x^2 + 4x + 8 + x)(x^2 + 4x + 8 + 2x)`
`= (x^2 + 5x + 8)(x^2 + 6x + 8)`
`= (x^2 + 5x + 8)(x^2 +2x + 4x + 8)`
`= (x^2 + 5x + 8)[(x^2 + 2x) + (4x + 8)]`
`= (x^2 + 5x + 8)[x(x + 2) + 4(x + 2)`
`= (x^2 + 5x + 8)(x + 2)(x + 4)`
`e, (x + 1)(x + 2)(x + 3)(x + 4) - 24`
`= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 24`
`= (x^2 + 4x + x + 4)(x^2 + 3x + 2x + 6) - 24`
`= (x^2 + 5x + 4)(x^2 + 5x + 6) - 24`
Đặt `x^2 + 5x + 5 = a`, ta được:
`(a - 1)(a + 1) - 24`
`= a^2 - 1 - 24`
`= a^2 - 25 =a^2 - 5^2`
`= (a - 5)(a + 5)`
`= (x^2 + 5x + 5 - 5)(x^2 + 5x + 5 + 5)`
`= (x^2 + 5x)(x^2 + 5x + 10)`
`= x(x + 5)(x^2 + 5x + 10)`