Giải thích các bước giải:
1) Ta có:
$\begin{array}{l}
a)\sqrt {{{\left( {\sqrt 3 - 2} \right)}^2}} + \sqrt {{{\left( {3 + \sqrt 3 } \right)}^2}} \\
= \left| {\sqrt 3 - 2} \right| + \left| {3 + \sqrt 3 } \right|\\
= 2 - \sqrt 3 + 3 + \sqrt 3 \\
= 5\\
b)\dfrac{{\sqrt {99} }}{{\sqrt {11} }} + \dfrac{{\sqrt {28} }}{{\sqrt 7 }} - \sqrt {\sqrt {81} } \\
= \sqrt {\dfrac{{99}}{{11}}} + \sqrt {\dfrac{{28}}{7}} - \sqrt 9 \\
= \sqrt 9 + \sqrt 4 - \sqrt 9 \\
= 2\\
c)\sqrt {33 - 12\sqrt 6 } + \sqrt {15 - 6\sqrt 6 } \\
= \sqrt {24 - 2.\left( {2\sqrt 6 } \right).3 + 9} + \sqrt {9 - 2.3.\sqrt 6 + 6} \\
= \sqrt {{{\left( {2\sqrt 6 - 3} \right)}^2}} + \sqrt {{{\left( {3 - \sqrt 6 } \right)}^2}} \\
= 2\sqrt 6 - 3 + 3 - \sqrt 6 \\
= \sqrt 6
\end{array}$
2)
a) Ta có:
M có nghĩa
$ \Leftrightarrow \left\{ \begin{array}{l}
a - 1 \ne 0\\
a \ge 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
a \ne 1\\
a \ge 0
\end{array} \right.$
Vây M có nghĩa $ \Leftrightarrow a \ge 0;a \ne 1$
b) Ta có: Với $a\ge 0; a\ne 1$
$\begin{array}{l}
M = \left( {\dfrac{{\sqrt a + 2}}{{a + 2\sqrt a + 1}} - \dfrac{{\sqrt a - 2}}{{a - 1}}} \right).\dfrac{{\sqrt a + 1}}{{\sqrt a }}\\
= \left( {\dfrac{{\sqrt a + 2}}{{{{\left( {\sqrt a + 1} \right)}^2}}} - \dfrac{{\sqrt a - 2}}{{\left( {\sqrt a - 1} \right)\left( {\sqrt a + 1} \right)}}} \right).\dfrac{{\sqrt a + 1}}{{\sqrt a }}\\
= \dfrac{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 1} \right) - \left( {\sqrt a - 2} \right)\left( {\sqrt a + 1} \right)}}{{{{\left( {\sqrt a + 1} \right)}^2}\left( {\sqrt a - 1} \right)}}.\dfrac{{\sqrt a + 1}}{{\sqrt a }}\\
= \dfrac{{2\sqrt a }}{{{{\left( {\sqrt a + 1} \right)}^2}\left( {\sqrt a - 1} \right)}}.\dfrac{{\sqrt a + 1}}{{\sqrt a }}\\
= \dfrac{2}{{\left( {\sqrt a - 1} \right)\left( {\sqrt a + 1} \right)}}\\
= \dfrac{2}{{a - 1}}
\end{array}$
Vậy $M = \dfrac{2}{{a - 1}},a \ge 0,a \ne 1$
c) Ta có:
$\begin{array}{l}
M \in Z \Leftrightarrow \dfrac{2}{{a - 1}} \in Z\\
a \in Z \Rightarrow \left( {a - 1} \right) \in Z\\
\Rightarrow \left( {a - 1} \right) \in U\left( 2 \right) = \left\{ { \pm 1; \pm 2} \right\}\\
\Rightarrow a \in \left\{ { - 1;0;2;3} \right\}
\end{array}$
Kết hợp ĐKXĐ ta có: $a \in \left\{ {0;2;3} \right\}$
Vậy $a \in \left\{ {0;2;3} \right\}$ thỏa mãn đề.