`7)3x²-75=0`
`⇔3(x²-25)=0`
`⇔3(x²-5²)=0`
`⇔3(x+5)(x-5)=0`
`⇔(x+5)(x-5)=0`
`⇔`\(\left[ \begin{array}{l}x+5=0\\x-5=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=-5\\x=5\end{array} \right.\)
Vậy `x=-5` hoặc `x=5`
`8)2x²-72=0`
`⇔2(x²-36)=0`
`⇔2(x²-6²)=0`
`⇔2(x+6)(x-6)=0`
`⇔(x+6)(x-6)=0`
`⇔`\(\left[ \begin{array}{l}x+6=0\\x-6=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=-6\\x=6\end{array} \right.\)
Vậy `x=-6` hoặc `x=6`
`9)2x²-98=0`
`⇔2(x²-49)=0`
`⇔2(x²-7²)=0`
`⇔2(x+7)(x-7)=0`
`⇔(x+7)(x-7)=0`
`⇔`\(\left[ \begin{array}{l}x+7=0\\x-7=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=-7\\x=7\end{array} \right.\)
Vậy `x=-7` hoặc `x=7`
`10)2x²-162=0`
`⇔2(x²-81)=0`
`⇔2(x²-9²)=0`
`⇔2(x+9)(x-9)=0`
`⇔(x+9)(x-9)=0`
`⇔`\(\left[ \begin{array}{l}x+9=0\\x-9=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=-9\\x=9\end{array} \right.\)
Vậy `x=-9` hoặc `x=9`
`11)(x+3)²=4`
`⇔(x+3)²-4=0`
`⇔(x+3)²-2²=0`
`⇔(x+3+2)(x+3-2)=0`
`⇔(x+5)(x+1)=0`
`⇔`\(\left[ \begin{array}{l}x+5=0\\x+1=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=-5\\x=-1\end{array} \right.\)
Vậy `x=-5` hoặc `x=-1`
`13)(x-7)²=36`
`⇔(x-7)²-36=0`
`⇔(x-7)²-6²=0`
`⇔(x-7+6)(x-7-6)=0`
`⇔(x-1)(x-13)=0`
`⇔`\(\left[ \begin{array}{l}x-1=0\\x-13=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=1\\x=13\end{array} \right.\)
Vậy `x=1` hoặc `x=13`
`17)x²-14x+49=0`
`⇔x²-2.x.7+7²=0`
`⇔(x-7)²=0`
`⇔x-7=0`
`⇔x=7`
Vậy `x=7`
`28)4x²-4x-3=0`
`⇔4x²-6x+2x-3=0`
`⇔2x(2x-3)+(2x-3)=0`
`⇔(2x-3)(2x+1)=0`
`⇔`\(\left[ \begin{array}{l}2x-3=0\\2x+1=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}2x=3\\2x=-1\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=\dfrac{3}{2}\\x=-\dfrac{1}{2}\end{array} \right.\)
Vậy `x=3/2` hoặc `x=-1/2`
`31)x³+3x²+3x+1=0`
`⇔x³+3.x².1+3.x.1²+1³=0`
`⇔(x+1)³=0`
`⇔x+1=0`
`⇔x=-1`
Vậy `x=-1`
`32)x³-3x²+3x-1=0`
`⇔x³-3.x².1+3.x.1²-1³=0`
`⇔(x-1)³=0`
`⇔x-1=0`
`⇔x=1`
Vậy `x=1`
`34)x³-6x²+12x-8=0`
`⇔x³-3.x².2+3.x.2²-2³=0`
`⇔(x-2)³=0`
`⇔x-2=0`
`⇔x=2`
Vậy `x=2`