Đáp án:
The minimum value of $P$ is $\dfrac94\Leftrightarrow a = b = c =\dfrac32$
Giải thích các bước giải:
$P = \dfrac{1+b}{1+ 4a^2} +\dfrac{1+c}{1 + 4b^2} +\dfrac{1+a}{1 + 4c^2}$
$\Leftrightarrow P =\dfrac{b}{1 + 4a^2} +\dfrac{c}{1 + 4b^2} +\dfrac{a}{1+ 4c^2} +\dfrac{1}{1 + 4a^2} +\dfrac{1}{1 + 4b^2} +\dfrac{1}{1+ 4c^2}$
$\Leftrightarrow P = \left(b -\dfrac{4a^2b}{1 + 4a^2}\right) + \left(c -\dfrac{4b^2c}{1 + 4b^2}\right) + \left(a -\dfrac{4c^2a}{1 + 4c^2}\right) + \left(1 -\dfrac{4a^2}{1 + 4a^2}\right) + \left(1 -\dfrac{4b^2}{1 + 4b^2}\right) + \left(1 -\dfrac{4c^2}{1 + 4c^2}\right)$
$\Leftrightarrow P = (a + b + c) -\left(\dfrac{4a^2b}{1 + 4a^2} + \dfrac{4b^2c}{1 + 4b^2}+\dfrac{4c^2a}{1 + 4c^2}\right) + 3 -\left(\dfrac{4a^2}{1 + 4a^2} +\dfrac{4b^2}{1 + 4b^2}+ \dfrac{4c^2}{1 + 4c^2}\right)$
By using $AM-GM$ inequality, we have:
$1 + 4a^2 \geq 2\sqrt{4a^2}= 4a$
$1 + 4b^2 \geq 4b$
$1 + 4c^2 \geq 4c$
Therefore:
$\left(\dfrac{4a^2b}{1 + 4a^2} + \dfrac{4b^2c}{1 + 4b^2}+\dfrac{4c^2a}{1 + 4c^2}\right)+ \left(\dfrac{4a^2}{1 + 4a^2} +\dfrac{4b^2}{1 + 4b^2}+ \dfrac{4c^2}{1 + 4c^2}\right)$
$\leq \left(\dfrac{4a^2b}{4a} +\dfrac{4b^2c}{4b} +\dfrac{4c^2a}{4c}\right)+\left(\dfrac{4a^2}{4a} +\dfrac{4b^2}{4b} +\dfrac{4c^2}{4c}\right)$
$\Leftrightarrow- \left(\dfrac{4a^2b}{1 + 4a^2} + \dfrac{4b^2c}{1 + 4b^2}+\dfrac{4c^2a}{1 + 4c^2}\right)-\left(\dfrac{4a^2}{1 + 4a^2} +\dfrac{4b^2}{1 + 4b^2}+ \dfrac{4c^2}{1 + 4c^2}\right)$
$\geq -(ab +bc + ca) - (a + b + c)$
$\Leftrightarrow (a + b + c) -\left(\dfrac{4a^2b}{1 + 4a^2} + \dfrac{4b^2c}{1 + 4b^2}+\dfrac{4c^2a}{1 + 4c^2}\right) + 3 -\left(\dfrac{4a^2}{1 + 4a^2} +\dfrac{4b^2}{1 + 4b^2}+ \dfrac{4c^2}{1 + 4c^2}\right)$
$\geq (a+b+c)-(ab +bc + ca) +3- (a+b+c)$
$\Leftrightarrow P \geq 3 - (ab + bc + ca)$
Beside, we also have:
$(a + b + c)^2 \geq 3(ab + bc+ ca)$
$\Leftrightarrow (ab + bc + ca)\leq \dfrac{(a+b+c)^2}{3}$
$\Leftrightarrow -(ab+bc + ca)\geq -\dfrac{(a+b+c)^2}{3}$
$\Leftrightarrow 3 -(ab+bc + ca)\geq 3-\dfrac{(a+b+c)^2}{3}$
$\Leftrightarrow P\geq 3 -\left(\dfrac32\right)^2\cdot\dfrac13= \dfrac94$
Equality holds if and only if $a = b = c =\dfrac12$
So the minimum value of $P$ is $\dfrac94\Leftrightarrow a = b = c =\dfrac32$