$A=\sqrt[]{6-2\sqrt[]{5}}+\sqrt[]{6+2\sqrt[]{5}}$
$A=\sqrt[]{6-2\sqrt[]{5}.1}+\sqrt[]{6+2\sqrt[]{5}.1}$
$A=\sqrt[]{(\sqrt[]{5}-1)^2}+\sqrt[]{(\sqrt[]{5}+1)^2}$
$A=|\sqrt[]{5}-1|+|\sqrt[]{5}+1|$
$A=\sqrt[]{5}-1+\sqrt[]{5}+1$
$A=2\sqrt[]{5}$
$B=\sqrt[]{3+2\sqrt[]{2}}-\sqrt[]{6-4\sqrt[]{2}}$
$B=\sqrt[]{3+2\sqrt[]{2}.1}-\sqrt[]{6-2.2.\sqrt[]{2}}$
$B=\sqrt[]{(\sqrt[]{2}+1)^2}-\sqrt[](2-{\sqrt[]{2})^2}$
$B=|\sqrt[]{5}-1|+|\sqrt[]{5}+1|$
$B=\sqrt[]{2}+1-2+\sqrt[]{2}$
$B=2\sqrt[]{2}-1$
$C=\sqrt[]{6+2\sqrt[]{5-\sqrt[]{13+4\sqrt[]{3}}}}$
$C=\sqrt[]{6+2\sqrt[]{5-\sqrt[]{13+2.2\sqrt[]{3}.1}}}$
$C=\sqrt[]{6+2\sqrt[]{5-\sqrt[]{(2\sqrt[]{3}+1)^2}}}$
$C=\sqrt[]{6+2\sqrt[]{5-2\sqrt[]{3}-1}}$
$C=\sqrt[]{6+2\sqrt[]{4-2\sqrt[]{3}}}$
$C=\sqrt[]{6+2\sqrt[]{4-2.\sqrt[]{3}.1}}$
$C=\sqrt[]{6+2\sqrt[]{(\sqrt[]{3}-1)^2}}$
$C=\sqrt[]{6+2(\sqrt[]{3}-1)}$
$C=\sqrt[]{6+2\sqrt[]{3}-2}$
$C=\sqrt[]{4+2\sqrt[]{3}}$
$C=\sqrt[]{4+2.\sqrt[]{3}.1}$
$C=\sqrt[]{(\sqrt[]{3}+1)^2}$
$C=\sqrt[]{3}+1$
$D = \sqrt{4 + \sqrt{8}}.\sqrt{2 + \sqrt{2 + \sqrt{2}}}.\sqrt{2 - \sqrt{2 + \sqrt{2}}}$
$D= \sqrt{4 + \sqrt{4.2}}.\sqrt{2^2 - \sqrt{2 + \sqrt{2}}^2}$
$D= \sqrt{4 + 2\sqrt{2}}.\sqrt{4 - (2 + \sqrt{2})}$
$D= \sqrt{2(2 + \sqrt{2})}.\sqrt{4 - 2 - \sqrt{2}}$
$D= \sqrt{2}.\sqrt{2 + \sqrt{2}}.\sqrt{2 - \sqrt{2}}$
$D= \sqrt{2}.\sqrt{2^2 - \sqrt{2}^2}$
$D= \sqrt{2}.\sqrt{4 - 2}$
$D= \sqrt{2}.\sqrt{2}$
$D= 2$