Đáp án:
Giải thích các bước giải:
`A=(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}):\frac{\sqrt{x}-1}{2\sqrt{x}-4}`
`A=[\frac{\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}+\frac{3(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{6\sqrt{x}-4}{(\sqrt{x}-1)(\sqrt{x}+1)}].\frac{2(\sqrt{x}-2)}{\sqrt{x}-1}`
`A=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{(\sqrt{x}-1)(\sqrt{x}+1)}.\frac{2(\sqrt{x}-2)}{\sqrt{x}-1}`
`A=\frac{x-2\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}.\frac{2(\sqrt{x}-2)}{\sqrt{x}-1}`
`A=\frac{(\sqrt{x}-1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)}.\frac{2(\sqrt{x}-2)}{\sqrt{x}-1}`
`A=\frac{2\sqrt{x}-4}{\sqrt{x}+1}`