Đáp án:
Ta có :
M = $\frac{10^{2018} + 1 }{10^{2019}+1}$
=> 10M = $\frac{10^{2019} + 10 }{10^{2019}+1}$ = 1 + $\frac{ 9 }{10^{2019}+1}$
N = $\frac{10^{2019} + 1 }{10^{2020}+1}$
=> 10N = $\frac{10^{2020} + 10 }{10^{2020}+1}$ = 1 + $\frac{ 9 }{10^{2020}+1}$
Do $10^{2020}+1> 10^{2019}+1$ => $\frac{9}{10^{2020}+1}$ < $\frac{9}{10^{2019}+1}$
=>$1+\frac{9}{10^{2020}+1} <1 + \frac{ 9 }{10^{2019}+1}$
=> 10N < 10M => N < M
Giải thích các bước giải: