\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{\sqrt {{x^6} - x + 1} }}{{\sqrt[3]{{{x^3} + x + 1}}}}\)
A.\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{\sqrt {{x^6} - x + 1} }}{{\sqrt[3]{{{x^3} + x + 1}}}} = 1 \),
B.\(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{\sqrt {{x^6} - x + 1} }}{{\sqrt[3]{{{x^3} + x + 1}}}} = + \infty \), \(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\sqrt {{x^6} - x + 1} }}{{\sqrt[3]{{{x^3} + x + 1}}}} = - \infty \)
C.\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{\sqrt {{x^6} - x + 1} }}{{\sqrt[3]{{{x^3} + x + 1}}}} = - \infty \),
D.\(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{\sqrt {{x^6} - x + 1} }}{{\sqrt[3]{{{x^3} + x + 1}}}} = + 1 \), \(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\sqrt {{x^6} - x + 1} }}{{\sqrt[3]{{{x^3} + x + 1}}}} = - 1 \)

Các câu hỏi liên quan