\( \mathop { \lim } \limits_{x \to \pm \infty } \left( { \sqrt {9{x^2} - x + 1} - 3x + 1} \right) \)
A.\(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {9{x^2} - x + 1}  - 3x + 1} \right) = \dfrac{5}{6}\) \(\mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {9{x^2} - x + 1}  - 3x + 1} \right) = + \infty\)  
B.\(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {9{x^2} - x + 1}  - 3x + 1} \right) = \dfrac{1}{6}\) \(\mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {9{x^2} - x + 1}  - 3x + 1} \right) =- \dfrac{1}{6}\)  
C.\(\mathop {\lim }\limits_{x \to  \pm \infty } \left( {\sqrt {9{x^2} - x + 1}  - 3x + 1} \right) = \dfrac{1}{6}\).
D.\(\mathop {\lim }\limits_{x \to  \pm \infty } \left( {\sqrt {9{x^2} - x + 1}  - 3x + 1} \right) = \dfrac{5}{6}\).

Các câu hỏi liên quan