Đáp án:
$\begin{array}{l}
a){\left( {\frac{{32}}{{81}}} \right)^2}.{\left( {\frac{{ - 9}}{8}} \right)^5}.{\left( { - 4} \right)^3}\\
= {\left( {\frac{{{2^5}}}{{{9^2}}}} \right)^2}.{\left( {\frac{{ - 9}}{{{2^3}}}} \right)^5}.{\left( { - {2^2}} \right)^3}\\
= \frac{{{2^{10}}}}{{{9^4}}}.\frac{{ - {9^5}}}{{{2^{15}}}}.\left( { - {2^6}} \right)\\
= \left( { - 9} \right).\left( { - 2} \right)\\
= 18\\
b){\left( {\frac{{ - 2}}{3}} \right)^3}{.9^2} + {\left( {\frac{{ - 3}}{4}} \right)^2}.32\\
= \frac{{ - {2^3}}}{{{3^3}}}.{\left( {{3^2}} \right)^2} + \frac{{{3^2}}}{{{2^4}}}{.2^5}\\
= \frac{{ - {2^3}}}{{{3^3}}}{.3^4} + {3^2}.2\\
= - {2^3}.3 + 9.2\\
= - 8.3 + 18\\
= - 24 + 18\\
= - 6\\
c){\left( { - 25} \right)^5}:{125^2}:{\left( { - 5} \right)^3}\\
= {\left( { - {5^2}} \right)^5}:{\left( {{5^3}} \right)^2}:{\left( { - 5} \right)^3}\\
= {5^{10}}:{5^6}:{\left( { - 5} \right)^3}\\
= - {5^{10 - 6 - 3}}\\
= - 5\\
d){\left( {\frac{8}{{27}}} \right)^3}:{\left( {\frac{{ - 2}}{3}} \right)^8}\\
= {\left( {\frac{{{2^3}}}{{{3^3}}}} \right)^3}.\frac{{{3^8}}}{{{2^8}}}\\
= \frac{{{2^9}}}{{{3^9}}}.\frac{{{3^8}}}{{{2^8}}}\\
= \frac{2}{3}
\end{array}$