Đáp án:
2) \(\left\{ \begin{array}{l}
x = \dfrac{{26}}{3}\\
y = - \dfrac{1}{3}
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
1)DK:x \ne 0;y \ne 0\\
\left\{ \begin{array}{l}
\dfrac{1}{x} - \dfrac{3}{{2y}} = 0\\
\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{{24}}
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\dfrac{1}{y} - - \dfrac{3}{{2y}} = \dfrac{1}{{24}}\\
\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{{24}}
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\dfrac{5}{{2y}} = \dfrac{1}{{24}}\\
\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{{24}}
\end{array} \right.\\
\to \left\{ \begin{array}{l}
y = 60\\
x = 40
\end{array} \right.\\
2)\left\{ \begin{array}{l}
xy + 3x + 3y + 9 - xy = 36\\
xy - 4x - 2y + 8 + 26 = xy
\end{array} \right.\\
\to \left\{ \begin{array}{l}
3x + 3y = 25\\
- 4x - 2y = - 34
\end{array} \right.\\
\to \left\{ \begin{array}{l}
3x + 3y = 25\\
2x + y = 17
\end{array} \right.\\
\to \left\{ \begin{array}{l}
y = 17 - 2x\\
3x + 3\left( {17 - 2x} \right) = 25
\end{array} \right.\\
\to \left\{ \begin{array}{l}
y = 17 - 2x\\
- 3x = - 26
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x = \dfrac{{26}}{3}\\
y = - \dfrac{1}{3}
\end{array} \right.
\end{array}\)