Đáp án:
$\begin{array}{l}
a)Dkxd:a \ge 0;a \ne 4;a \ne 9\\
A = \dfrac{{2\sqrt a - 9}}{{a - 5\sqrt a + 6}} - \dfrac{{\sqrt a + 3}}{{\sqrt a - 2}} - \dfrac{{2\sqrt a + 1}}{{3 - \sqrt a }}\\
= \dfrac{{2\sqrt a - 9 - \left( {\sqrt a + 3} \right)\left( {\sqrt a - 3} \right) - \left( {2\sqrt a + 1} \right)\left( {\sqrt a - 2} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a - 3} \right)}}\\
= \dfrac{{2\sqrt a - 9 - \left( {a - 9} \right) - \left( {2a - 4\sqrt a + \sqrt a - 2} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a - 3} \right)}}\\
= \dfrac{{2\sqrt a - 9 - a + 9 - 2a + 3\sqrt a + 2}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a - 3} \right)}}\\
= \dfrac{{ - 3a + 5\sqrt a + 2}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a - 3} \right)}}\\
= \dfrac{{ - \left( {3a - 5\sqrt a - 2} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a - 3} \right)}}\\
= \dfrac{{ - \left( {3\sqrt a + 1} \right)\left( {\sqrt a - 2} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a - 3} \right)}}\\
= \dfrac{{ - \left( {3\sqrt a + 1} \right)}}{{\sqrt a - 3}}\\
= \dfrac{{3\sqrt a + 1}}{{3 - \sqrt a }}\\
b)A < 1\\
\Rightarrow \dfrac{{3\sqrt a + 1}}{{3 - \sqrt a }} < 1\\
\Rightarrow \dfrac{{3\sqrt a + 1 - \left( {3 - \sqrt a } \right)}}{{3 - \sqrt a }} < 0\\
\Rightarrow \dfrac{{4\sqrt a - 2}}{{3 - \sqrt a }} < 0\\
\Rightarrow \dfrac{{2\sqrt a - 1}}{{\sqrt a - 3}} > 0\\
\Rightarrow \left[ \begin{array}{l}
\sqrt a > 3\\
0 \le \sqrt a < \dfrac{1}{2}
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
a > 9\\
0 \le a < \dfrac{1}{4}
\end{array} \right.\\
Vậy\,0 \le a < \dfrac{1}{4};a > 9\\
c)A = \dfrac{{3\sqrt a + 1}}{{3 - \sqrt a }}\\
= \dfrac{{3\sqrt a - 9 + 10}}{{3 - \sqrt a }}\\
= \dfrac{{ - 3\left( {3 - \sqrt a } \right) + 10}}{{3 - \sqrt a }}\\
= - 3 + \dfrac{{10}}{{3 - \sqrt a }} \in Z\\
\Rightarrow 10 \vdots \left( {3 - \sqrt a } \right)\\
\Rightarrow \left( {3 - \sqrt a } \right) \in \left\{ \begin{array}{l}
- 10; - 5; - 2; - 1;\\
10;5;2;1
\end{array} \right\}\\
\Rightarrow \sqrt a \in \left\{ {13;8;5;4; - 7; - 2;1;2} \right\}\\
Do:\sqrt a \ge 0;\sqrt a \ne 2;\sqrt a \ne 3\\
\Rightarrow \sqrt a \in \left\{ {1;4;5;8;13} \right\}\\
\Rightarrow a \in \left\{ {1;16;25;64;169} \right\}\\
Vậy\,a \in \left\{ {1;16;25;64;169} \right\}
\end{array}$