Đáp án:
$\begin{array}{l}
a)\dfrac{{1 + \sqrt 2 }}{{1 - \sqrt 2 }} = \dfrac{{{{\left( {1 + \sqrt 2 } \right)}^2}}}{{\left( {1 - \sqrt 2 } \right)\left( {1 + \sqrt 2 } \right)}} = \dfrac{{3 + 2\sqrt 2 }}{{1 - 2}} =  - 3 - 2\sqrt 2 \\
b)\dfrac{{\sqrt {2 + \sqrt 3 } }}{{\sqrt {2 - \sqrt 3 } }} = \dfrac{{\sqrt {4 + 2\sqrt 3 } }}{{\sqrt {4 - 2\sqrt 3 } }}\\
 = \dfrac{{\sqrt {{{\left( {\sqrt 3  + 1} \right)}^2}} }}{{\sqrt {{{\left( {\sqrt 3  - 1} \right)}^2}} }} = \dfrac{{\sqrt 3  + 1}}{{\sqrt 3  - 1}}\\
 = \dfrac{{{{\left( {\sqrt 3  + 1} \right)}^2}}}{{3 - 1}} = \dfrac{{4 + 2\sqrt 3 }}{2} = 2 + \sqrt 3 \\
c)\dfrac{{1 - {a^2}}}{{1 - \sqrt a }} = \dfrac{{\left( {1 - a} \right)\left( {1 + a} \right)}}{{1 - \sqrt a }}\\
 = \dfrac{{\left( {1 - \sqrt a } \right)\left( {1 + \sqrt a } \right)\left( {1 + a} \right)}}{{1 - a}}\\
 = \left( {1 + \sqrt a } \right)\left( {1 + a} \right)\\
 = 1 + a + \sqrt a  + a\sqrt a \\
d)\sqrt {\dfrac{2}{{3 - \sqrt 5 }}}  = \sqrt {\dfrac{4}{{6 - 2\sqrt 5 }}}  = \dfrac{2}{{\sqrt {{{\left( {\sqrt 5  - 1} \right)}^2}} }}\\
 = \dfrac{2}{{\sqrt 5  - 1}}\\
 = \dfrac{{2\left( {\sqrt 5  + 1} \right)}}{{5 - 1}} = \dfrac{{\sqrt 5  + 1}}{2}\\
e)\sqrt {\dfrac{{a - 4}}{{2\left( {\sqrt a  - 2} \right)}}}  = \sqrt {\dfrac{{\left( {\sqrt a  - 2} \right)\left( {\sqrt a  + 2} \right)}}{{2\left( {\sqrt a  - 2} \right)}}} \\
 = \dfrac{{\sqrt {\sqrt a  + 2} }}{{\sqrt 2 }}\\
 = \dfrac{{\sqrt {2\sqrt a  + 4} }}{2}\\
f)\dfrac{{1 + \sqrt 3 }}{{\sqrt 3  - 1}} = \dfrac{{{{\left( {1 + \sqrt 3 } \right)}^2}}}{{3 - 1}} = 2 + \sqrt 3 
\end{array}$