Đáp án:
1) \(\dfrac{{\sqrt x - 1}}{{\sqrt x }}\)
2) \(x = \dfrac{1}{4}\)
3) P=-1
4) \(3 - \sqrt 5 \)
5) \(0 < x < \dfrac{1}{9}\)
6) \(Min = \dfrac{3}{4}\)
Giải thích các bước giải:
\(\begin{array}{l}
1)P = \dfrac{{1 + \sqrt x }}{{\sqrt x \left( {\sqrt x - 1} \right)}}:\dfrac{{\sqrt x + 1}}{{{{\left( {\sqrt x - 1} \right)}^2}}}\\
= \dfrac{{1 + \sqrt x }}{{\sqrt x \left( {\sqrt x - 1} \right)}}.\dfrac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x + 1}}\\
= \dfrac{{\sqrt x - 1}}{{\sqrt x }}\\
2)P = - 1\\
\to \dfrac{{\sqrt x - 1}}{{\sqrt x }} = - 1\\
\to \sqrt x - 1 = - \sqrt x \\
\to 2\sqrt x = 1\\
\to x = \dfrac{1}{4}\\
3)\left[ \begin{array}{l}
\sqrt x - 1 = 0\\
2\sqrt x - 1 = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 1\left( l \right)\\
x = \dfrac{1}{4}
\end{array} \right.\\
Thay:x = \dfrac{1}{4}\\
\to P = \dfrac{{\sqrt {\dfrac{1}{4}} - 1}}{{\sqrt {\dfrac{1}{4}} }} = - 1\\
4)Thay:x = \sqrt {9 - 4\sqrt 5 } + 3\sqrt 5 + 11\\
= \sqrt {5 - 2.2.\sqrt 5 + 4} + 3\sqrt 5 + 11\\
= \sqrt {{{\left( {\sqrt 5 - 2} \right)}^2}} + 3\sqrt 5 + 11\\
= \sqrt 5 - 2 + 3\sqrt 5 + 11 = 4\sqrt 5 + 9\\
= 5 + 2.2.\sqrt 5 + 4 = {\left( {\sqrt 5 + 2} \right)^2}\\
\to P = \dfrac{{\sqrt {{{\left( {\sqrt 5 + 2} \right)}^2}} - 1}}{{\sqrt {{{\left( {\sqrt 5 + 2} \right)}^2}} }}\\
= \dfrac{{\sqrt 5 + 2 - 1}}{{\sqrt 5 + 2}} = 3 - \sqrt 5 \\
5)P < \dfrac{1}{{\sqrt x }} - 5\\
\to \dfrac{{\sqrt x - 1}}{{\sqrt x }} < \dfrac{1}{{\sqrt x }} - 5\\
\to \dfrac{{\sqrt x - 1 - 1 + 5\sqrt x }}{{\sqrt x }} < 0\\
\to 6\sqrt x - 2 < 0\left( {do:\sqrt x > 0\forall x > 0} \right)\\
\to x < \dfrac{1}{9}\\
\to 0 < x < \dfrac{1}{9}\\
6)Q = \dfrac{1}{x} + 3P\\
= \dfrac{1}{x} + 3.\dfrac{{\sqrt x - 1}}{{\sqrt x }}\\
= \dfrac{1}{x} + 3 - \dfrac{3}{{\sqrt x }}\\
Đặt:\dfrac{1}{{\sqrt x }} = t\left( {t > 0} \right)\\
\to Q = {t^2} - 3t + 3\\
= {t^2} - 2.t.\dfrac{3}{2} + \dfrac{9}{4} + \dfrac{3}{4}\\
= {\left( {t - \dfrac{3}{2}} \right)^2} + \dfrac{3}{4}\\
Do:{\left( {t - \dfrac{3}{2}} \right)^2} \ge 0\forall t > 0\\
\to {\left( {t - \dfrac{3}{2}} \right)^2} + \dfrac{3}{4} \ge \dfrac{3}{4}\\
\to Min = \dfrac{3}{4}\\
\Leftrightarrow t - \dfrac{3}{2} = 0\\
\to t = \dfrac{3}{2}\\
\to \dfrac{1}{{\sqrt x }} = \dfrac{3}{2}\\
\to \sqrt x = \dfrac{2}{3}\\
\to x = \dfrac{4}{9}
\end{array}\)