Đáp án:
Giải thích các bước giải:
`A=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{5}{x+\sqrt{x}-6}+\frac{1}{2-\sqrt{x}}`
ĐK: `x \ge 0, x \ne 4`
`A=\frac{x-4}{(\sqrt{x}+3)(\sqrt{x}-2)}-\frac{5}{(\sqrt{x}+3)(\sqrt{x}-2)}-\frac{\sqrt{x}+3}{(\sqrt{x}+3)(\sqrt{x}-2)}`
`A=\frac{x-4-5-\sqrt{x}-3}{(\sqrt{x}+3)(\sqrt{x}-2)}`
`A=\frac{x-\sqrt{x}-12}{(\sqrt{x}+3)(\sqrt{x}-2)}`
`A=\frac{(\sqrt{x}-4)(\sqrt{x}+3)}{(\sqrt{x}+3)(\sqrt{x}-2)}`
`A=\frac{\sqrt{x}-4}{\sqrt{x}-2}`