Bài 1:
a) 9.$27^{n}$ = $3^{5}$
<=> 9.$27^{n}$ = 243
<=> $27^{n}$ =. 27
Vậy n = 1
b) ($2^{3}$ : 4).$2^{n}$ =4
<=> (8:4). $2^{n}$ = 4
<=> 2. $2^{n}$ =4
<=> $2^{n}$ = 2
Vậy n =1
c) $3^{-2}$. $3^{4}$. $3^{n}$ =$3^{7}$
<=> $\frac{1}{9}$ . 81 . $3^{n}$ = 2187
<=> 9. $3^{n}$ = 2187
<=> $3^{n}$=243
Vậy n = 5.
d) $2^{-1}$ .$2^{n}$+4. $2^{n}$= 9. $2^{5}$
<=> $\frac{1}{2}$. $2^{n}$ + 4.$2^{n}$ =288
<=> $2^{n}$ . ( $\frac{1}{2}$ +4)=288
<=> $2^{n}$ . 4,5 = 288
<=>$2^{n}$ = 64
Vậy n= 6
Bài 3:
a) $2^{300}$và $3^{200}$
Ta có:
$2^{300}$ = ($2^{3}$)^100 = $8^{100}$
$3^{200}$ = ($3^{2}$)^100 = $9^{100}$
Vì $8^{100}$ < $9^{100}$ => $2^{300}$ < $3^{200}$.
b) $99^{20}$ và $9999^{10}$
Ta có: $99^{20}$ = $99^{2.10}$ = $9081^{10}$
Vì $9081^{10}$ < $9999^{10}$ =>$99^{20}$ < $9999^{10}$
c) $3^{500}$ và $7^{300}$
Ta có: $3^{500}$ = ($3^{5}$) ^100 = $243^{100}$
$7^{300}$ = ($7^{3}$)^100 = $343^{100}$
Vì 243 < 343 => $3^{500}$ < $7^{300}$