$\left\{\begin{matrix}3x+2y=10\\2x-y=m\end{matrix}\right.\\ \Leftrightarrow \left\{\begin{matrix}3x+2(2x-m)=10\\y=2x-m\end{matrix}\right.\\ \Leftrightarrow \left\{\begin{matrix}7x=10+2m\\y=2x-m\end{matrix}\right.\\ \Leftrightarrow \left\{\begin{matrix}x=\dfrac{10+2m}{7}\\y=2x-m\end{matrix}\right.$
Để $x>0;y<0$ thì
$\left\{\begin{matrix}\dfrac{10+2m}{7}>0\\m>2x\end{matrix}\right.\\ \Leftrightarrow \left\{\begin{matrix}10+2m>0\\m>\dfrac{20+4m}{7}\end{matrix}\right.\\ \Leftrightarrow \left\{\begin{matrix}m>-5\\m>\dfrac{20}{3}\end{matrix}\right.\\ \Leftrightarrow m>\dfrac{20}{3}$
Vậy $m>\dfrac{20}{3}$ là giá trị cần tìm.
Xin 5 sao+ctlhn ạ