Đáp án:
\(\begin{array}{l}
1,\\
a,\,\,\,\,2\\
b,\,\,\,\,0\\
c,\,\,\,\,10\\
2,\\
a,\\
x = 15\\
b,\\
\left[ \begin{array}{l}
x = 2\\
x = - 1
\end{array} \right.\\
3,\\
a,\\
\left( {\sqrt x - \sqrt y } \right){\left( {\sqrt x + \sqrt y } \right)^2}\\
b,\\
\sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } = \sqrt 6 \\
4,\\
a,\\
\left[ \begin{array}{l}
A = - 1,\,\,\,\,3 \le x \le 4\\
A = 2\sqrt {x - 3} - 3,\,\,\,\,4 < x < 7\\
A = 1,\,\,\,\,\,x \ge 7
\end{array} \right.\\
b,\\
A = - 1
\end{array}\)
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
1,\\
a,\\
{\left( {\sqrt {4 - \sqrt 7 } - \sqrt {4 + \sqrt 7 } } \right)^2}\\
= {\sqrt {4 - \sqrt 7 } ^2} - 2.\sqrt {\left( {4 - \sqrt 7 } \right)\left( {4 + \sqrt 7 } \right)} + {\sqrt {4 + \sqrt 7 } ^2}\\
= \left( {4 - \sqrt 7 } \right) - 2.\sqrt {{4^2} - {{\sqrt 7 }^2}} + \left( {4 + \sqrt 7 } \right)\\
= 4 - \sqrt 7 - 2.\sqrt {16 - 7} + 4 + \sqrt 7 \\
= 8 - 2\sqrt 9 \\
= 8 - 2.3\\
= 8 - 6\\
= 2\\
b,\\
\dfrac{{5\sqrt 3 - 3\sqrt 5 }}{{\sqrt {15} }} + \dfrac{{3 - \sqrt 6 }}{{\sqrt 3 - \sqrt 2 }} - \dfrac{{10}}{{2\sqrt 5 }}\\
= \dfrac{{{{\sqrt 5 }^2}.\sqrt 3 - {{\sqrt 3 }^2}.\sqrt 5 }}{{\sqrt {15} }} + \dfrac{{{{\sqrt 3 }^2} - \sqrt 3 .\sqrt 2 }}{{\sqrt 3 - \sqrt 2 }} - \dfrac{{2.5}}{{2\sqrt 5 }}\\
= \dfrac{{\sqrt 5 .\sqrt 3 .\left( {\sqrt 5 - \sqrt 3 } \right)}}{{\sqrt {15} }} + \dfrac{{\sqrt 3 .\left( {\sqrt 3 - \sqrt 2 } \right)}}{{\sqrt 3 - \sqrt 2 }} - \dfrac{{2.{{\sqrt 5 }^2}}}{{2.\sqrt 5 }}\\
= \dfrac{{\sqrt {15} .\left( {\sqrt 5 - \sqrt 3 } \right)}}{{\sqrt {15} }} + \sqrt 3 - \sqrt 5 \\
= \sqrt 5 - \sqrt 3 + \sqrt 3 - \sqrt 5 \\
= 0\\
c,\\
\left( {5\sqrt 2 + 2\sqrt 5 } \right)\sqrt 5 - \sqrt {250} \\
= 5\sqrt 2 .\sqrt 5 + 2.{\sqrt 5 ^2} - \sqrt {25.10} \\
= 5.\sqrt {2.5} + 2.5 - \sqrt {{5^2}.10} \\
= 5\sqrt {10} + 10 - 5\sqrt {10} \\
= 10\\
2,\\
a,\\
\sqrt {16x + 16} + \sqrt {4x + 4} = 16 - \sqrt {x + 1} + \sqrt {9x + 9} \\
\Leftrightarrow \sqrt {16.\left( {x + 1} \right)} + \sqrt {4.\left( {x + 1} \right)} = 16 - \sqrt {x + 1} + \sqrt {9\left( {x + 1} \right)} \\
\Leftrightarrow \sqrt {{4^2}.\left( {x + 1} \right)} + \sqrt {{2^2}.\left( {x + 1} \right)} = 16 - \sqrt {x + 1} + \sqrt {{3^2}.\left( {x + 1} \right)} \\
\Leftrightarrow 4\sqrt {x + 1} + 2\sqrt {x + 1} = 16 - \sqrt {x + 1} + 3\sqrt {x + 1} \\
\Leftrightarrow 6\sqrt {x + 1} = 16 + 2\sqrt {x + 1} \\
\Leftrightarrow 4\sqrt {x + 1} = 16\\
\Leftrightarrow \sqrt {x + 1} = 4\\
\Leftrightarrow x + 1 = {4^2}\\
\Leftrightarrow x + 1 = 16\\
\Leftrightarrow x = 15\\
b,\\
\sqrt {4{x^2} - 4x + 1} = 3\\
\Leftrightarrow \sqrt {{{\left( {2x} \right)}^2} - 2.2x.1 + {1^2}} = 3\\
\Leftrightarrow \sqrt {{{\left( {2x - 1} \right)}^2}} = 3\\
\Leftrightarrow \left| {2x - 1} \right| = 3\\
\Leftrightarrow \left[ \begin{array}{l}
2x - 1 = 3\\
2x - 1 = - 3
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = 4\\
2x = - 2
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 2\\
x = - 1
\end{array} \right.\\
3,\\
a,\\
x,y \ge 0 \Rightarrow \left| x \right| = x;\,\,\left| y \right| = y\\
\sqrt {{x^3}} - \sqrt {{y^3}} + \sqrt {{x^2}y} - \sqrt {x{y^2}} \\
= \sqrt {{x^2}.x} - \sqrt {{y^2}.y} + \sqrt {{x^2}.y} - \sqrt {{y^2}.x} \\
= \left| x \right|.\sqrt x - \left| y \right|.\sqrt y + \left| x \right|.\sqrt y - \left| y \right|.\sqrt x \\
= x\sqrt x - y\sqrt y + x\sqrt y - y\sqrt x \\
= \left( {x\sqrt x - y\sqrt x } \right) + \left( {x\sqrt y - y\sqrt y } \right)\\
= \sqrt x .\left( {x - y} \right) + \sqrt y .\left( {x - y} \right)\\
= \left( {x - y} \right)\left( {\sqrt x + \sqrt y } \right)\\
= \left( {{{\sqrt x }^2} - {{\sqrt y }^2}} \right)\left( {\sqrt x + \sqrt y } \right)\\
= \left( {\sqrt x - \sqrt y } \right).\left( {\sqrt x + \sqrt y } \right)\left( {\sqrt x + \sqrt y } \right)\\
= \left( {\sqrt x - \sqrt y } \right){\left( {\sqrt x + \sqrt y } \right)^2}\\
b,\\
\sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } \\
= \dfrac{1}{{\sqrt 2 }}.\left( {\sqrt 2 .\sqrt {2 + \sqrt 3 } + \sqrt 2 .\sqrt {2 - \sqrt 3 } } \right)\\
= \dfrac{1}{{\sqrt 2 }}.\left( {\sqrt {2.\left( {2 + \sqrt 3 } \right)} + \sqrt {2.\left( {2 - \sqrt 3 } \right)} } \right)\\
= \dfrac{1}{{\sqrt 2 }}.\left( {\sqrt {4 + 2\sqrt 3 } + \sqrt {4 - 2\sqrt 3 } } \right)\\
= \dfrac{1}{{\sqrt 2 }}.\left( {\sqrt {3 + 2\sqrt 3 + 1} + \sqrt {3 - 2\sqrt 3 + 1} } \right)\\
= \dfrac{1}{{\sqrt 2 }}.\left( {\sqrt {{{\sqrt 3 }^2} + 2.\sqrt 3 .1 + {1^2}} + \sqrt {{{\sqrt 3 }^2} - 2.\sqrt 3 .1 + {1^2}} } \right)\\
= \dfrac{1}{{\sqrt 2 }}.\left( {\sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} + \sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} } \right)\\
= \dfrac{1}{{\sqrt 2 }}.\left( {\sqrt 3 + 1 + \sqrt 3 - 1} \right)\\
= \dfrac{1}{{\sqrt 2 }}.2\sqrt 3 \\
= \sqrt 2 .\sqrt 3 \\
= \sqrt 6 \\
4,\\
a,\\
DKXD:\,\,\,\,x \ge 3\\
A = \sqrt {x - 2 - 2\sqrt {x - 3} } - \sqrt {x + 1 - 4\sqrt {x - 3} } \\
= \sqrt {\left( {x - 3} \right) - 2\sqrt {x - 3} + 1} - \sqrt {\left( {x - 3} \right) - 4\sqrt {x - 3} + 4} \\
= \sqrt {{{\sqrt {x - 3} }^2} - 2.\sqrt {x - 3} .1 + {1^2}} - \sqrt {{{\sqrt {x - 3} }^2} - 2.\sqrt {x - 3} .2 + {2^2}} \\
= \sqrt {{{\left( {\sqrt {x - 3} - 1} \right)}^2}} - \sqrt {{{\left( {\sqrt {x - 3} - 2} \right)}^2}} \\
= \left| {\sqrt {x - 3} - 1} \right| - \left| {\sqrt {x - 3} - 2} \right|\\
TH1:\,\,\,\sqrt {x - 3} \le 1 \Leftrightarrow x - 3 \le 1 \Leftrightarrow 3 \le x \le 4\\
\Rightarrow \left\{ \begin{array}{l}
\sqrt {x - 3} - 1 \le 0\\
\sqrt {x - 3} - 2 \le 0
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
\left| {\sqrt {x - 3} - 1} \right| = - \left( {\sqrt {x - 3} - 1} \right)\\
\left| {\sqrt {x - 3} - 2} \right| = - \left( {\sqrt {x - 3} - 2} \right)
\end{array} \right.\\
A = \left| {\sqrt {x - 3} - 1} \right| - \left| {\sqrt {x - 3} - 2} \right|\\
= - \left( {\sqrt {x - 3} - 1} \right) + \left( {\sqrt {x - 3} - 2} \right)\\
= - \sqrt {x - 3} + 1 + \sqrt {x - 3} - 2\\
= - 1\\
TH2:\,\,\,1 < \sqrt {x - 3} < 2 \Leftrightarrow 1 < x - 3 < 4 \Leftrightarrow 4 < x < 7\\
\Rightarrow \left\{ \begin{array}{l}
\sqrt {x - 3} - 1 > 0\\
\sqrt {x - 3} - 2 < 0
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
\left| {\sqrt {x - 3} - 1} \right| = \sqrt {x - 3} - 1\\
\left| {\sqrt {x - 3} - 2} \right| = - \left( {\sqrt {x - 3} - 2} \right)
\end{array} \right.\\
A = \left| {\sqrt {x - 3} - 1} \right| - \left| {\sqrt {x - 3} - 2} \right|\\
= \left( {\sqrt {x - 3} - 1} \right) + \left( {\sqrt {x - 3} - 2} \right)\\
= 2\sqrt {x - 3} - 3\\
TH3:\,\,\,\sqrt {x - 3} \ge 2 \Rightarrow x - 3 \ge 4 \Leftrightarrow x \ge 7\\
\Rightarrow \left\{ \begin{array}{l}
\sqrt {x - 3} - 1 > 0\\
\sqrt {x - 3} - 2 \ge 0
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
\left| {\sqrt {x - 3} - 1} \right| = \sqrt {x - 3} - 1\\
\left| {\sqrt {x - 3} - 2} \right| = \sqrt {x - 3} - 2
\end{array} \right.\\
A = \left| {\sqrt {x - 3} - 1} \right| - \left| {\sqrt {x - 3} - 2} \right|\\
= \left( {\sqrt {x - 3} - 1} \right) - \left( {\sqrt {x - 3} - 2} \right)\\
= \sqrt {x - 3} - 1 - \sqrt {x - 3} + 2\\
= 1\\
\Rightarrow \left[ \begin{array}{l}
A = - 1,\,\,\,\,3 \le x \le 4\\
A = 2\sqrt {x - 3} - 3,\,\,\,\,4 < x < 7\\
A = 1,\,\,\,\,\,x \ge 7
\end{array} \right.\\
b,\\
3 \le x \le 4 \Rightarrow A = - 1
\end{array}\)