Đáp án:
3. C
Giải thích các bước giải:
Câu 3:
TXĐ: \(D=R\)\{\(\dfrac{-4}{m}\)}
\(y'=\dfrac{4-m^{2}}{(mx+4)^{2}}\)
Để hàm số đồng biến trên từng khoảng xác định thì:
\(y' >0\)
\(\Leftrightarrow 4-m^{2} >0\)
\(\Leftrightarrow -2 <m<2\)
\(\Rightarrow m \epsilon \) {-1;0;1}
\(\Rightarrow \) Có 3 giá trị nguyên của m