Đáp án đúng: A
Phương pháp giải:
- Gọi vận tốc dự định và thời gian dự định đi hết quãng đường AB lần lượt là \(x\,\,\left( {km/h} \right)\) và \(y\,\,\left( h \right)\) (ĐK: \(x,y > 0\)).
- Từ mối liên hệ: Quãng đường = Vận tốc \( \times \) Thời gian, lập 2 phương trình liên quan đến \(x;y\).
- Giải hệ phương trình bằng phương pháp thế hoặc cộng đại số và kết luận.
Giải chi tiết:Gọi vận tốc dự định và thời gian dự định đi hết quãng đường AB lần lượt là \(x\,\,\left( {km/h} \right)\) và \(y\,\,\left( h \right)\) \(\left( {x,y > 0} \right).\)
Khi đó độ dài quãng đường AB là \(xy\,\,\left( {km} \right)\).
+) Nếu người đó đi nhanh hơn dự định trong mỗi giờ là 10km, tức là đi với vận tốc \(x + 10\,\,\left( {km/h} \right)\) thì người đó đến đích sớm hơn dự định 36 phút = \(\frac{{36}}{{60}} = \frac{3}{5}\,\,\left( h \right)\), tức là đi hết quãng đường trong \(y - \frac{3}{5}\,\,\left( h \right)\).
Khi đó độ dài quãng đường AB là \(\left( {x + 10} \right)\left( {y - \frac{3}{5}} \right) = xy\).
\( \Leftrightarrow xy - \frac{3}{5}x + 10y - 6 = xy \Leftrightarrow - \frac{3}{5}x + 10y - 6 = 0\) \( \Leftrightarrow - 3x + 50y - 30 = 0\,\,\left( 1 \right)\)
+) Nếu người đó đi chậm hơn dự định trong mỗi giờ là 10km, tức là đi với vận tốc \(x - 10\,\,\left( {km/h} \right)\) thì người đó đến đích muộn hơn dự định \(1\,\,\left( h \right)\), tức là đi hết quãng đường trong \(y + 1\,\,\left( h \right)\).
Khi đó độ dài quãng đường AB là \(\left( {x - 10} \right)\left( {y + 1} \right) = xy\).
\( \Leftrightarrow xy + x - 10y - 10 = xy \Leftrightarrow x - 10y - 10 = 0\,\,\left( 2 \right)\)
Từ (1) và (2) ta có hệ phương trình
\(\begin{array}{l}\left\{ \begin{array}{l} - 3x + 50y - 30 = 0\\x - 10y - 10 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x - 50y = - 30\\3x - 30y = 30\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 20y = - 60\\x - 10y - 10 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 3\,\,\left( {tm} \right)\\x - 30 - 10 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 40\\y = 3\end{array} \right.\,\,\left( {tm} \right)\end{array}\).
Vậy vận tốc dự định và thời gian dự định đi hết quãng đường AB lần lượt là \(40\,\,km/h\) và \(3h\), độ dài quãng đường AB là \(xy = 40.3 = 120\,\,\left( {km} \right)\).
Chọn A.