Đáp án:
306,4J và 106,125J
Giải thích các bước giải:
Lực tác dụng lên phương ngang có giá trị:
\[{F_s} = F.\cos 30 = 5\sqrt 3 N\]
Lực ma sát có giá trị:
\[\begin{gathered}
N + F\sin 30 = P \Rightarrow N = P - F\sin 30 = 2.10 - 10.\frac{1}{2} = 15N \hfill \\
{F_{ms}} = \mu N = 0,2.15 = 3N \hfill \\
\end{gathered} \]
Gia tốc của chuyển động:
\[ma = {F_s} - {F_{ms}} \Rightarrow a = \frac{{5\sqrt 3 - 3}}{2} = 2,83m/{s^2}\]
Quãng đường đi được:
\[s = \frac{1}{2}a{t^2} = \frac{1}{2},{2.83.5^2} = 35,375m\]
CÔng của lực F:
\[{A_F} = F.s = 5\sqrt 3 .35,375 = 306,4J\]
CÔng của lực ma sát:
\[{A_{ms}} = {F_{ms}}.s = 3.35,375 = 106,125J\]