`1, 8x^2-4x=0`
`<=> 4x(2x-1)=0`
`<=> [(4x=0),(2x-1=0):}`
`<=>`\(\left[ \begin{array}{l}x=0\\x=\dfrac{1}{2}\end{array} \right.\)
Vậy `S={0;1/2}`
`2,x^3-16x=0`
`<=> x(x^2-16)=0`
`<=> x(x-4)(x+4)=0`
`<=> [(x=0),(x-4=0),(x+4=0):}`
`<=> [(x=0),(x=4),(x=-4):}`
Vậy `S={0;+-4}`
`3, 2x^2=x`
`<=> 2x^2-x=0`
`<=> x(2x-1)=0`
`<=> [(x=0),(2x-1=0):}`
`<=>`\(\left[ \begin{array}{l}x=0\\x=\dfrac{1}{2}\end{array} \right.\)
Vậy `S={0;1/2}`
`4, x^2-10x=-25`
`<=> x^2-10x+25=0`
`<=> (x-5)^2=0`
`<=> x-5=0`
`<=> x=5`
Vậy `S={5}`
`5, x^2=5x`
`<=> x^2-5x=0`
`<=> x(x-5)=0`
`<=> [(x=0),(x-5=0):}`
`<=> [(x=0),(x=5):}`
Vậy `S={0;5}`
`6, x(x-2)-5x+10=0`
`<=> x(x-2)-5(x-2)=0`
`<=> (x-2)(x-5)=0`
`<=> [(x-2=0),(x-5=0):}`
`<=> [(x=2),(x=5):}`
Vậy `S={2;5}`
`7, 2x^3-12x^2+18x=0`
`<=> 2x(x^2-6x+9)=0`
`<=> 2x(x-3)^2=0`
`<=> [(x=0),(x-3=0):}`
`<=> [(x=0),(x=3):}`
Vậy `S={0;3}`
`8. 2x(x-1)+5(x-1)=0`
`<=> (x-1)(2x+5)=0`
`<=> [(x-1=0),(2x+5=0):}`
`<=>`\(\left[ \begin{array}{l}x=1\\x=\dfrac{-5}{2}\end{array} \right.\)
Vậy `S={1;-5/2}`
`9, (3x+1)^2-4(x-3)^2=0`
`<=> (3x+1)^2-(2x-6)^2=0`
`<=> (3x+1-2x+6)(3x+1+2x-6)=0`
`<=> (x+7)(5x-5)=0`
`<=> 5(x+7)(x-1)=0`
`<=> [(x+7=0),(x-1=0):}`
`<=> [(x=-7),(x=1):}`
Vậy `S={-7;1}`
`10, x^2-x=2`
`<=> x^2-x-2=0`
`<=> x^2+x-2x-2=0`
`<=> x(x+1)-2(x+1)=0`
`<=> (x+1)(x-2)=0`
`<=> [(x+1=0),(x-2=0):}`
`<=> [(x=-1),(x=2):}`
Vậy `S={-1;2}`