Đáp án:
\(x = k\pi \) $(k\in\mathbb Z)$
Giải thích các bước giải:
\(\begin{array}{l} \sin 2x + 2\sin x = 0\\ \Leftrightarrow 2\sin x.\cos x + 2\sin x = 0\\ \Leftrightarrow 2\sin x(\cos x + 1) = 0\\ \Leftrightarrow \left[ \begin{array}{l} \cos x = - 1\\ \sin x = 0 \end{array} \right. \Leftrightarrow x = k\pi \end{array}\) $(k\in\mathbb Z)$.