Đáp án:
$\begin{array}{l}
8)\\
4.\left( {\dfrac{3}{4} + x} \right) - \dfrac{1}{5} = 7x - \dfrac{1}{7}\\
\Leftrightarrow 3 + 4x - \dfrac{1}{5} = 7x - \dfrac{1}{7}\\
\Leftrightarrow 7x - 4x = 3 - \dfrac{1}{5} + \dfrac{1}{7}\\
\Leftrightarrow 3x = \dfrac{{103}}{{35}}\\
\Leftrightarrow x = \dfrac{{103}}{{105}}\\
Vậy\,x = \dfrac{{103}}{{105}}\\
9)\dfrac{1}{3}\left( {\dfrac{1}{2} - 6} \right) + 5x = x - \dfrac{3}{5}\\
\Leftrightarrow \dfrac{1}{3}.\dfrac{{ - 11}}{2} + 5x = x - \dfrac{3}{5}\\
\Leftrightarrow 5x - x = \dfrac{{ - 3}}{5} + \dfrac{{11}}{6}\\
\Leftrightarrow 4x = \dfrac{{37}}{{30}}\\
\Leftrightarrow x = \dfrac{{37}}{{120}}\\
Vậy\,x = \dfrac{{37}}{{120}}\\
10) - \dfrac{3}{2}\left( {7 - \dfrac{1}{6}} \right) + 4\left( {x - \dfrac{1}{2}} \right) = 3\\
\Leftrightarrow - \dfrac{3}{2}.\dfrac{{41}}{6} + 4x - 2 = 3\\
\Leftrightarrow 4x = 3 + 2 + \dfrac{{41}}{4}\\
\Leftrightarrow 4x = \dfrac{{61}}{4}\\
\Leftrightarrow x = \dfrac{{61}}{{16}}\\
Vậy\,x = \dfrac{{61}}{{16}}\\
11)\dfrac{1}{2}x - \dfrac{5}{3} = \dfrac{1}{4}\left( {\dfrac{1}{2} - 4} \right)\\
\Leftrightarrow \dfrac{1}{2}x = \dfrac{5}{3} + \dfrac{1}{4}.\dfrac{{ - 7}}{2}\\
\Leftrightarrow \dfrac{1}{2}x = \dfrac{5}{3} - \dfrac{7}{8}\\
\Leftrightarrow \dfrac{1}{2}x = \dfrac{{19}}{{24}}\\
\Leftrightarrow x = \dfrac{{19}}{{12}}\\
Vậy\,x = \dfrac{{19}}{{12}}\\
12)\dfrac{2}{3} - \dfrac{1}{5}\left( {x - \dfrac{1}{4}} \right) = \dfrac{3}{2} - \dfrac{1}{4}\\
\Leftrightarrow \dfrac{2}{3} - \dfrac{1}{5}x + \dfrac{1}{{20}} = \dfrac{5}{4}\\
\Leftrightarrow \dfrac{1}{5}x = \dfrac{2}{3} + \dfrac{1}{{20}} - \dfrac{5}{4}\\
\Leftrightarrow \dfrac{1}{5}x = \dfrac{{ - 8}}{{15}}\\
\Leftrightarrow x = \dfrac{{ - 8}}{3}\\
Vậy\,x = \dfrac{{ - 8}}{3}\\
13)3\left( {x - \dfrac{1}{5}} \right) - 7\left( {\dfrac{5}{{14}} - 3} \right) = 20\\
\Leftrightarrow 3x - \dfrac{3}{5} - 7.\dfrac{{ - 37}}{{14}} = 20\\
\Leftrightarrow 3x = 20 + \dfrac{3}{5} - \dfrac{{37}}{2}\\
\Leftrightarrow 3x = \dfrac{{21}}{{10}}\\
\Leftrightarrow x = \dfrac{7}{{10}}\\
Vậy\,x = \dfrac{7}{{10}}
\end{array}$