`P = 1/(1 × 2 × 3 × 4) + 1/(2 × 3 × 4 × 5) + ... + 1/(n × (n + 1) × (n + 2) × (n + 3))`
`=> P × 3 = 3/(1 × 2 × 3 × 4) + 3/(2 × 3 × 4 × 5) + ... + 3/(n × (n + 1) × (n + 2) × (n + 3))`
`= 1/(1 × 2 × 3) - 1/(2 × 3 × 4) + 1/(2 × 3 × 4) - 1/(3 × 4 × 5) + ... + 1/(n × (n + 1) × (n + 2)) - 1/((n + 1) × (n + 2) × (n + 3))`
`= 1/(1 × 2 × 3) - 1/((n + 1) × (n + 2) × (n + 3))`
`= 1/6 - 1/((n + 1) × (n + 2) × (n + 3))`
`=> P = (1/6 - 1/((n + 1) × (n + 2) × (n + 3)))/3`