Đáp án:
Giải thích các bước giải:
`P=(x\sqrt{x}-1)/(x-\sqrt{x})-(x-1)/(x+\sqrt{x})+(x+1)/(\sqrt{x})`
ĐK: `x > 0, x \ne 1`
`P=\frac{\sqrt{x^3}-1}{\sqrt{x}(\sqrt{x}-1)}-\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}+1)}+\frac{x+1}{\sqrt{x}}`
`P=\frac{(\sqrt{x}-1)(x+\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}-1)}-\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}+1)}+\frac{x+1}{\sqrt{x}}`
`P=\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{x+1}{\sqrt{x}}`
`P=\frac{x+\sqrt{x}+1-\sqrt{x}+1+x+1}{\sqrt{x}}`
`P=\frac{2x+3}{\sqrt{x}}`