Đáp án:
Giải thích các bước giải:
a) $x^3-(y-1)^3\\=(x-y+1)(x^2+x(y-1)+(y-1)^2)\\=(x-y+1)(x^2 + x y - x + y^2 - 2 y + 1)$
d) $x^6-y^6\\=(x^2)^3-(y^2)^3\\=(x^2-y^2)(x^4-x^2y^2+y^4)\\=(x-y)(x+y)(x^4-x^2y^2+y^4)$
e) $x^{12}-y^4\\=(x^6-y^2)(x^6+y^2)\\=(x^3-y)(x^3+y)(x^6+y^2)$
f) $\frac{1}{27}+a^3\\=a^3+(\frac{1}{3})^3\\=(a+\frac{1}{3})(a^2+\frac{a}{3}+\frac{a^2}{9})$
g) $\frac{x^3}{8}-8\\=(\frac{x}{2})^3-2^3\\=(\frac{x}{2}-2)(\frac{x^2}{4}-x+4)$
h) $27-27m+9m^2-m^3\\=-(m^3-3\times 3^3m+3\times 3m^2-3^3)\\=-(m-3)^3$