`a,(x^2+x+1)^2-2(x^2+x+1)-15`
$\text{Đặt $x^2$ + x + 1 = y}$
`⇒y^2-2y-15`
`=y^2-5y+3y-15`
`=y(y-5)+3(y-5)`
`=(y+3)(y-5)`
$\text{Quay trở lại ta có:}$
`⇒(x^2+x+1+3)(x^2+x+1-5)`
`=(x^2+x+4)(x^2+x-4)`
`b,(x^2+2x+3)(x^2+2x+4)-12`
$\text{Đặt $x^2$ + 2x + 3 = y}$
`⇒y(y+1)-12`
`=y^2+y-12`
`=y^2+4y-3y-12`
`=y(y+4)-3(y+4)`
`=(y-3)(y+4)`
$\text{Quay trở lại ta có:}$
`⇒(x^2+2x+3-3)(x^2+2x+3+4)`
`=(x^2+2x)(x^2+2x+7)`
`=x(x+2)(x^2+2x+7)`