1, x4+5x3−12x2+5x+1
=x4−2x3+7x3+x2−14x2+x2+7x−2x+1
=(x4−2x3+x2)+(7x3−14x2+7x)+(x2−2x+1)
=x2(x2−2x+1)+7x(x2−2x+1)+(x2−2x+1)
=x2(x−1)2+7x(x−1)2+(x−1)2
=(x−1)2(x2+7x+1)
2, 6x4+5x3−38x2+5x+6
=6x4+20x3−15x3+6x2−50x2+6x2−15x+20x+6
=6x4+20x3+6x2−15x3−50x2−15x+6x2+20x+6
=(2x2−5x+2)(3x2+10x+3)
=(2x2−x−4x+2)(3x2+10x+3)
=[x(2x−1)−2(2x−1)](3x2+10x+3)
=(x−2)(2x−1)(3x2+10x+3)
=(x−2)(2x−1)(3x2+9x+x+3)
=(x−2)(2x−1)[3x(x+3)+(x+3)]
=(x−2)(2x−1)(3x+1)(x+3)