Để pt ban đầu chỉ có hai nghiệm thì pt $(*)$ chỉ có thể có một nghiệm dương (>0). Từ đây xảy ra hai trường hợp. Một là $(*)$ có duy nhất một nghiệm kép dương. Hai là $(*)$ có hai nghiệm nhưng một nghiệm âm một nghiệm dương.
TH1: Nếu $(*)$ có duy nhất một nghiệm . Khi đó \(\Delta'=1-(-m+3)=0\Leftrightarrow m=2\). Thay vào \((*)\Rightarrow t^2-2t+1=0\Rightarrow t=1\Rightarrow x=\pm 1\) (thỏa mãn)
TH2: Nếu $(*)$ có hai nghiệm.
Hai nghiệm \(\Leftrightarrow \Delta'=1-(-m+3)>0\Leftrightarrow m>2\)
Theo định lý Viete thì để có duy nhất một nghiệm dương trong hai nghiệm thì \(t_1t_2=3-m< 0\Leftrightarrow m> 3\)
Vậy theo đáp án thì D là đáp án đúng. Còn nếu đầy đủ thì còn cả \(m>3\)