Phương trình \(\sqrt 3 {\cot ^2}x - 4\cot x + \sqrt 3 = 0\) có nghiệm là:
A.\(\left[ \matrix{x = {\pi \over 3} + k\pi \hfill \cr x = {\pi \over 6} + k\pi \hfill \cr} \right.\,\,\left( {k \in Z} \right)\)
B.\(\left[ \matrix{x = {\pi \over 3} + k2\pi \hfill \cr x = {\pi \over 6} + k2\pi \hfill \cr} \right.\,\,\left( {k \in Z} \right)\)
C.\(\left[ \matrix{x = - {\pi \over 3} + k\pi \hfill \cr x = - {\pi \over 6} + k\pi \hfill \cr} \right.\,\,\left( {k \in Z} \right)\)
D.\(\left[ \matrix{x = - {\pi \over 3} + k2\pi \hfill \cr x = {\pi \over 6} + k\pi \hfill \cr} \right.\,\,\left( {k \in Z} \right)\)