Đáp án:
`A=(2sqrtx+3)/(2sqrtx-1)`
Giải thích các bước giải:
`A=((xsqrtx+x+sqrtx)/(xsqrtx-1)+(sqrtx+3)/(sqrtx-1)).(x-1)/(2x+sqrtx-1)`
`A=((sqrtx(x+sqrtx+1))/((sqrtx-1)(x+sqrtx+1))+(sqrtx+3)/(sqrtx-1))*((sqrtx-1)(sqrtx+1))/((sqrtx+1)(2sqrtx-1))`
`A=(sqrtx+sqrtx+3)/(sqrtx-1)*(sqrtx-1)/(2sqrtx-1)`
`A=(2sqrtx+3)/(2sqrtx-1)`