Giải chi tiết:Ta có: \(\begin{array}{l}P = \left( {\dfrac{1}{{\sqrt a + 2}} + \dfrac{1}{{\sqrt a - 2}}} \right):\dfrac{{\sqrt a }}{{a - 4}}\\ = \left[ {\dfrac{{\sqrt a - 2}}{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)}} + \dfrac{{\sqrt a + 2}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 2} \right)}}} \right].\dfrac{{a - 4}}{{\sqrt a }}\\ = \dfrac{{\sqrt a - 2 + \sqrt a + 2}}{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)}}.\dfrac{{a - 4}}{{\sqrt a }}\\ = \dfrac{{2\sqrt a }}{{a - 4}}.\dfrac{{a - 4}}{{\sqrt a }}\\ = 2\end{array}\) Vậy \(P = 2\) với \(a > 0\) và \(a e 4.\) Chọn B.