Giải thích các bước giải:
$f(-x)=\dfrac{m\sqrt{2018-x}+(m^2-2)\sqrt{2018+x}}{(m^2-1)(-x)}\\ =-\dfrac{m\sqrt{2018-x}+(m^2-2)\sqrt{2018+x}}{(m^2-1)x}\\ =\dfrac{-\left(m\sqrt{2018-x}+(m^2-2)\sqrt{2018+x}\right)}{(m^2-1)x}\\ =\dfrac{-m\sqrt{2018-x}-(m^2-2)\sqrt{2018+x}}{(m^2-1)x}\\ =\dfrac{-m\sqrt{2018-x}+(2-m^2)\sqrt{2018+x}}{(m^2-1)x}\\ =\dfrac{(2-m^2)\sqrt{2018+x}-m\sqrt{2018-x}}{(m^2-1)x}$